Расчет водяного отопления: пример расчета теплового баланса

Тепловой баланс расчетного помещения

Даже если бы в помещении не было систем обеспечения микроклимата, то есть систем отопления и вентиляции, баланс тепла все равно бы соблюдался, просто баланс существовал бы при температурах внутреннего воздуха, неприемлемых для человека. Наличие систем отопления и вентиляции позволяет обеспечить тепловой баланс при требуемой температуре внутреннего воздуха. Таким образом, если при расчетной температуре внутреннего воздуха баланс не наблюдается, то есть имеют место избытки или недостатки теплоты, система вентиляции должна скорректировать баланс, введя в помещение точно такое же количество теплоты, но с противоположным знаком.

Таким образом, для определения расчетной тепловой (холодильной или отопительной) способности системы следует произвести расчет избытков теплоты в помещении путем суммирования всех теплопоступлений и теплопотерь с учетом знака (теплопотери учитываются со знаком «минус»). Отметим, что термины теплопоступлений и теплопотери отражаю тлишь направление потоков теплоты: теплопоступления – это поток теплоты внутрь помещения, а теплопотери – поток теплоты из помещения, как показано на рисунке 6.1.

Можно сказать, что теплопотери – это отрицательные теплопоступления. Два термина используются лишь для того, чтобы в разговорной речи и при записи большинства расчетных зависимостей не указывать знаком «минус» перед значением тепловых потерь.

Учитывая наличие знака «минус» перед значением тепловых потерь, результат суммирования теплопоступлений и теплопотерь может оказаться как положительным, так и отрицательным. В первом случае говорят об из-бытках теплоты в помещении, а во втором случае – о недостатках теплоты. Два термина опять-таки используются исключительно ради того, чтобы не упоминать все время действительный знак результата вычислений.

Таблица теплового баланса составляется для трех периодов года по форме, приведенной в конце данного раздела. Хотя данная таблица и называется «Таблица теплового баланса», на самом деле из нее как раз чаще всего и следует, что теплового баланса в помещении без вмешательства системы вентиляции и нет. Так что правильнее было бы ее называть «таблицей небаланса». На самом деле это просто типовая форма, в которой подсчитываются избытки или недостатки теплоты, которые должна компенсировать система вентиляции.

Если в помещении выделяется влага, что обычно и бывает в общественных зданиях (влага поступает от людей), то избытки и недостатки теплоты в помещении подсчитываются раздельно для явного и для полного тепла.

Для общественных зданий характерно наличие водяной системы отопления (чиллеры) с местными нагревательными приборами. Такая система является постоянно действующей и работает круглые сутки, в отличие от систем дежурного отопления промышленных зданий, которые могут отключаться в рабочее время (в первую очередь это касается систем воздушного отопления). Поэтому обычно при составлении таблицы теплового баланса общественных зданий предполагается, что система отопления будет работать, и тепловые поступления от нее включаются в одну из колонок графы «теплопоступления». Тепловой же баланс для промышленного здания обычно составляется без учета теплопоступлений от отопления, так как вопрос о выборе типа системы отопления и ее режима работы решается позднее.

Тепловой баланс общественного здания обычно складывается из типовых составляющих, рассмотренных в разделе «Поступление вредностей» и приведенных на рисунке 6.1. Конечно, теплопотери через ограждения имеют место только в холодный и переходный период года, а поступления теплоты от солнечной радиации обычно учитывается только в теплый период года. Кроме того, если теплопоступления от солнечной радиации через остекление больше расчетных теплопоступлений от освещения, то при подсчете избытков теплоты учитываются только они, а если меньше – только теплопоступления от освещения.

Результаты расчета теплового баланса используются для расчета воздухообмена по тепловым избыткам.

Точка J

Обзоры и рейтинги статьи

Расчет водяного отопления: пример расчета теплового баланса

Для внедрения обогревательной установки, где в качестве циркуляционного вещества выступает вода, требуется предварительно произвести точные гидравлические вычисления.

Осуществить самостоятельно расчет водяного отопления (далее — СВО) без использования профильных программ невозможно, поскольку в вычислениях используются сложные выражения, определить значения которых с помощью обычного калькулятора нельзя.

  • Тепловой баланс жилищной конструкции
    • Расчет теплопотерь через ОК
    • Тепловые расходы вентиляции
  • Пример расчета теплового баланса
    • Расчет теплопотерь стены
    • Вычисление ТП окон и дверей
    • Определение ТП пола и потолка
    • Вычисление ТП вентиляции
  • Особенности расчета СВО
    • ГР главного циркуляционного кольца
    • ГР второстепенного циркуляционного кольца
    • Расчет радиаторных батарей
  • Выводы и полезное видео по теме

Тепловой баланс жилищной конструкции

При разработке, внедрении любой системы обогревательного типа необходимо знать тепловой баланс (далее – ТБ). Зная тепловую мощность для поддержания температуры в помещении, можно правильно подобрать оборудование и грамотно распределить его нагрузку.

Зимой помещение несет определенные тепловые потери (далее – ТП). Основная масса энергии выходит через ограждающие элементы и вентиляционные проемы. Незначительные расходы приходятся на инфильтрацию, нагревание предметов и др.

ТП зависят от слоев, из которых состоят ограждающие конструкции (далее — ОК). Современные строительные материалы, в частности, утеплители, обладают низким коэффициентом теплопроводности (далее – КТ), благодаря чему через них уходит меньше тепла. Для домов одинаковой площади, но с разным строением ОК, тепловые затраты будут отличаться.

Помимо определения ТП, важно вычислить ТБ жилища. Показатель учитывает не только количество энергии, покидающей помещение, но и количество необходимой мощности для поддержания определенных градусных мер в доме.

Наиболее точные результаты дают профильные программы, разработанные для строителей. Благодаря им возможно учесть больше факторов, влияющих на ТП.

С высокой точностью можно вычислить ТП жилища с помощью формул.

Общие тепловые расходы дома рассчитывают по уравнению:

В выражении — количество тепла, покидающее помещение через ОК, — тепловые расходы вентиляции.

Потери через вентиляцию учитываются в том случае, если воздух, попадающий в помещение, имеет более низкую температуру.

В расчетах обычно учитывают ОК, входящие одной стороной на улицу. Это наружные стены, пол, крыша, двери и окна. Общие ТП равны сумме ТП каждой ОК, то есть:

  • — значение ТП стен;
  • — ТП окон;
  • — ТП дверей;
  • — ТП потолка;
  • — ТП пола.

Если пол или потолок имеет неодинаковое строение по всей площади, то ТП вычисляют для каждого участка отдельно.

Расчет теплопотерь через ОК

Для вычислений потребуются следующие сведения:

  • строение стен, используемые материалы, их толщина, КТ;;
  • наружная температура в предельно холодную пятидневку зимы в городе;
  • площадь ОК;
  • ориентация ОК;
  • рекомендуемая температура в жилище в зимний период.

Для вычисления ТП нужно найти общее тепловое сопротивление Rок. Для этого нужно узнать тепловое сопротивление R1, R2, R3, …, Rn каждого слоя ОК.

Коэффициент Rn рассчитывается по формуле:

В формуле B — толщина слоя ОК в мм, k — КТ каждого слоя.

Общее R возможно определить по выражению:

Производители дверей и окон обычно указывают коэффициент R в паспорте к изделию, поэтому рассчитывать его отдельно нет необходимости.

Общая формула расчета ТП через ОК выглядит следующим образом.

  • S — площадь ОК, м 2 ;
  • tvnt — желаемая температура в помещении;
  • tnar — наружная температура воздуха;
  • R — коэффициент сопротивления, рассчитывается отдельно или берется из паспорта изделия;
  • l — уточняющий коэффициент, учитывающий ориентацию стен относительно сторон света.

Расчет ТБ позволяет подобрать оборудование необходимой мощности, что исключит вероятность образования дефицита тепла или его переизбытка. Дефицит тепловой энергии компенсируют путем увеличение потока воздуха через вентиляцию, переизбыток – установкой дополнительного отопительного оборудования.

Тепловые расходы вентиляции

Общая формула расчета ТП вентиляции имеет следующий вид:

В выражении переменные имеют следующий смысл:

  • — затраты поступающего воздуха;
  • — плотность воздуха при определенной температуре в помещении;
  • с — теплоемкость воздуха;
  • — температура в доме;
  • — наружная температура воздуха.

Если в здании установлена вентиляция, то параметр берется из технических характеристик к прибору. Если же вентиляция отсутствует, то берется стандартный показатель удельного воздухообмена, равный 3 м 3 в час. Исходя из этого, вычисляется по формуле:

В выражении — площадь пола.

Далее следует вычислить плотность воздуха при заданной в помещении температуре . Сделать это можно по формуле:

Если вентиляция или инфильтрация неорганизованная, в стенах присутствуют щели или дыры, то вычисление ТП через отверстия следует доверить специальным программам.

Пример расчета теплового баланса

Рассмотрим дом высотой 2.5 м, шириной 6 м и длиной 8 м, располагающийся в городе Оха в Сахалинской области, где в предельно холодную 5-дневку градусник термометра опускается на -29 градусов.

В результате измерения было установлена температура грунта — +5. Рекомендуемая температура внутри конструкции составляет +21 градус.

Стены рассматриваемого дома состоят из:

  • кирпичной кладки толщиной В=0.51 м, КТ k=0.64;
  • минеральной ваты В=0.05 м, k=0.05;
  • облицовки В=0.09 м, k=0.26.

При определении k лучше воспользоваться таблицами, представленными на сайте производителя, или найти информацию в техническом паспорте изделия.

Напольное покрытие состоит из следующих слоев:

  • OSB-плит В=0.1 м, k=0.13;
  • минваты В=0.05 м, k=0.047;
  • стяжки цементной В=0.05 м, k=0.58;
  • пенополистирола В=0.06 м, k=0.043.

В доме подвальное помещение отсутствует, а пол имеет одинаковое строение по всей площади.

Потолок состоит из слоев:

  • листов гипсокартона B=0.025 м, k= 0.21;
  • утеплителя В=0.05 м, k=0.14;
  • кровельного перекрытия В=0.05 м, k=0.043.

Выходы на чердак отсутствуют.

В доме всего 6 двухкамерных окон с И-стеклом и аргоном. Из технического паспорта на изделия известно, что R=0.7. Окна имеют габариты 1.1х1.4 м.

Двери имеют габариты 1х2.2 м, показатель R=0.36.

Расчет теплопотерь стены

Стены по всей площади состоят из трех слоев. Вначале рассчитаем их суммарное тепловое сопротивление, используя формулу:

Учитывая исходные сведения, получим:

Узнав R, можно приступить к расчетам ТП северной, южной, восточной и западной стены.

Вычислим площадь северной стены

Тогда, подставляя в формулу

и учитывая, что l=1.1, получим:

Площадь южной стены . В стене отсутствуют встроенные окна или двери, поэтому, учитывая коэффициент l=1, получим следующие ТП:

Для западной и восточной стены коэффициент l=1.05. Поэтому можно найти общую площадь этих стен, то есть:

В стены встроено 6 окон и одна дверь. Рассчитаем общую площадь окон и S дверей:

Определим S стен без учета S окон и дверей:

Подсчитаем общие ТП восточной и западной стены:

Получив результаты, подсчитаем количество тепла, уходящего через стены:

Итого общие ТП стен составляют 6 кВт.

Вычисление ТП окон и дверей

Окна располагаются на восточной и западной стенах, поэтому при расчетах коєффициент l=1.05. Известно, что строение всех конструкций одинаково и R=0.7. Используя значения площади, приведенные выше, получим:

Зная, что для дверей R=0.36, а S=2.2, определим их ТП:

В итоге через окна выходит 340 Вт тепла, а через двери — 42 Вт.

Определение ТП пола и потолка

Очевидно, что площадь потолка и пола будет одинакова, и вычисляется следующим образом:

Рассчитаем общее тепловое сопротивление пола с учетом его строения.

Зная, что температура грунта tnar=+5 и учитывая коэффициент l=1, вычислим Q пола:

Округлив, получим, что теплопотери пола составляют около 3 кВт.

Определив тепловое сопротивление потолка, найдем его Q:

Отсюда следует, что через потолок и пол уходит почти 6 кВт.

Вычисление ТП вентиляции

В помещении вентиляция организована, вычисляется по формуле:

Исходя из технических характеристик, удельный теплообмен составляет 3 кубических метра в час, то есть:

Для вычисления плотности используем формулу:

Расчетная температура в помещении составляет +21 градус.

Подставляя известные значения, получим:

Подставим в вышеприведенную формулу полученные цифры:

Учитывая ТП на вентиляцию, общее Q здания составит:

Переведя в кВт, получим общие тепловые потери 16 кВт.

Особенности расчета СВО

После нахождения показателя ТП переходят к гидравлическому расчету (далее — ГР), на основе которого получают информацию о:

  • оптимальном диаметре труб, который при перепадах давления будет способен пропускать заданное количество теплоносителя;
  • расходе теплоносителя на определенном участке;
  • скорости движения воды;
  • значении удельного сопротивления.
Читайте также:  Нормы установки коаксиального дымохода: требования и правила

Перед началом расчетов для упрощения вычислений изображают пространственную схему системы, на которой все ее элементы располагают параллельно друг другу.

Рассмотрим основные этапы расчетов водяного отопления.

ГР главного циркуляционного кольца

Методика расчета ГР основывается на предположении, что во всех стояках и ветвях перепады температуры одинаковые.

Алгоритм расчета следующий:

  1. На изображенной схеме, учитывая теплопотери, наносят тепловые нагрузки, действующие на отопительные приборы, стояки.
  2. Исходя из схемы, выбирают главное циркуляционное кольцо (далее — ГЦК). Особенность этого кольца в том, что в нем циркуляционное давление на единицу длины кольца принимает наименьшее значение.
  3. ГЦК разбивают на участки, имеющие постоянные расход тепла. Для каждого участка указывают номер, тепловую нагрузку, диаметр и длину.

В вертикальной системе однотрубного типа в качестве ГЦК берется то кольцо, через которое проходит наиболее нагруженный стояк при тупиковом или попутном движении воды по магистралям.

В горизонтальной системе однотрубного типа ГЦК должно иметь наименьшее циркуляционное давление да единицу длины кольца. Для систем с естественной циркуляцией ситуация аналогична.

При ГР стояков вертикальной системы однотрубного типа проточные, проточно-регулируемые стояки, имеющие в своем составе унифицированные узлы, рассматривают в качестве единого контура. Для стояков с замыкающими участками производят разделение, учитывая распределение воды в трубопроводе каждого приборного узла.

Расход воды на заданном участке вычисляется по формуле:

В выражении буквенные символы принимаю следующие значения:

— тепловая нагрузка контура;

— добавочные табличные коэффициенты, учитывающие теплоотдачу в помещении;

c — теплоемкость воды, равна 4,187;

— температура воды в подающем магистрали;

— температура воды в обратной магистрали.

ГР второстепенного циркуляционного кольца

После ГР главного кольца определяют давление в малом циркуляционном кольце, образующееся через ближайшие его стояки, учитывая, что потери давления могут отличаться на не более чем 15 % при тупиковой схеме и не более, чем на 5%, при попутной.

Если невозможно увязать потери давления, устанавливают дроссельную шайбу, диаметр которой вычисляют с использованием программных методов.

Расчет радиаторных батарей

Вернемся к плану дома, размещенного выше. Путем вычислений было выявлено, что для поддержания теплового баланса потребуется 16 кВт энергии. В рассматриваемом доме 6 помещений разного назначения – гостиная, санузел, кухня, спальня, коридор, прихожая.

Исходя из габаритов конструкции, можно вычислить объем V:

Далее нужно найти количество тепловой мощности на один м 3 . Для этого Q необходимо поделить на найденный объем, то есть:

P=16000/120=133 Вт на м 3

Далее необходимо определить, сколько тепловой мощности потребуется для одной комнаты. На схеме площадь каждого помещения уже рассчитана. Определим объем:

  • санузел – 4.19*2.5=10.47;
  • гостиная – 13.83*2.5=34.58;
  • кухня – 9.43*2.5=23.58;
  • спальня – 10.33*2.5=25.83;
  • коридор – 4.10*2.5=10.25;
  • прихожая – 5.8*2.5=14.5.

В расчетах также нужно учитывать помещения, в которых отопительных батарей нет, например, коридор.

Определим необходимое количество тепла для каждой комнаты, умножив объем комнаты на показатель Р. Получим требуемую мощность:

  • для санузла: 10.47*133=1392 Вт;
  • для гостиной: 34.58*133=4599 Вт;
  • для кухни: 23.58*133=3136 Вт;
  • для спальни: 25.83*133=3435 Вт;
  • для коридора: 10.25*133=1363 Вт;
  • для прихожей: 14.5*133=1889 Вт.

Приступим к расчету радиаторных батарей. Будем использовать алюминиевые радиаторы, высота которых составляем 60 см, мощность при температуре 70 равна 150 Вт. Подсчитаем необходимое количество радиаторных батарей.

  • санузел: 1392_150=10
  • гостиная: 4599_150=31
  • кухня: 3136_150=21
  • спальня: 3435_150=23
  • прихожая: 1889_150=13

Итого потребуется 98 радиаторных батарей.

Выводы и полезное видео по теме

В видео можно ознакомиться с примером расчета водяного отопления, который осуществляется средствами программы Valtec:

Гидравлические расчеты лучше всего осуществлять с помощью специальных программ, которые гарантируют высокую точность вычислений, учитывают все нюансы конструкции.

Самостоятельный расчёт индивидуальной системы отопления

Из всех известных на данный момент вариантов для обогрева собственного дома наиболее распространённым видом является индивидуальная система водяного отопления. Масляные радиаторы, камины, печи, тепловентиляторы и обогреватели инфракрасного излучения зачастую используют как вспомогательные приборы.

Система отопления частного дома состоит из отопительных приборов, трубопровода и запорно-регулирующих механизмов, всё это служит для транспортировки тепла от теплогенератора к конечным точкам отопления помещений. Важно понимать, что надёжность, долговечность и эффективность индивидуальной системы отопления зависит от её правильного расчёта и монтажа, а также от качества используемых материалов в данной системе и её грамотной эксплуатации.

Расчёт системы отопления

Рассмотрим подробно упрощённый вариант расчёта системы водяного отопления, в котором мы будем использовать стандартные и общедоступные комплектующие. На рисунке схематически представлена индивидуальная система отопления частного дома на основе одноконтурного котла. Прежде всего, нам необходимо определиться с его мощностью, так как он является основой всех вычислений в дальнейшем. Выполним данную процедуру по описанной ниже схеме.

Общая площадь помещения: S = 78,5; общий объём: V = 220

У нас имеется одноэтажный дом с тремя комнатами, прихожей, коридором, кухней, ванной и туалетом. Зная площадь каждого отдельного помещения и высоту комнат, необходимо произвести элементарные расчёты для того, чтобы вычислить объём всего дома:

Таким образом, мы посчитали объём всех отдельных помещений, благодаря чему теперь можно вычислить общий объём дома, он равен 220 кубическим метрам. Заметьте, мы также посчитали объём коридора, но на самом деле там не указано ни одного отопительного прибора, для чего это нужно? Дело в том, что коридор также будет отапливаться, но пассивным образом, за счёт циркуляции тепла, поэтому нам необходимо внести его в общий список отопления, для того, чтобы расчёт был правильным и дал нужный результат.

Следующий этап расчёта мощности котла мы будем проводить, исходя из необходимого количества энергии на один кубический метр. Для каждого региона существует свой показатель — в наших вычислениях используем 40 Вт на кубический метр, исходя из рекомендаций для регионов европейской части СНГ:

Полученную цифру необходимо возвести в коэффициент 1,2, что даст нам 20% запаса мощности для того, чтобы котёл постоянно не работал на полную мощность. Таким образом, мы понимаем, что нам необходим котёл, который способен вырабатывать 10,6 кВт (стандартные одноконтурные котлы выпускаются мощностью 12–14 кВт).

Расчёт радиаторов

В нашем случае мы будем использовать стандартные алюминиевые радиаторы высотой 0,6 м. Мощность каждого ребра такого радиатора при температуре 70 °С составляет 150 Вт. Далее мы посчитаем мощность каждого радиатора и количество условных рёбер:

  • комната 1: Округляем до 1500 и получаем 10 условных рёбер, но поскольку у нас два радиатора, оба под окнами, мы возьмём один с 6-ю рёбрами, второй с 4-мя.
  • комната 2: Округляем до 1500 и получаем один радиатор с 10-ю рёбрами.
  • комната 3: Округляем до 2700 и получаем три радиатора: 1-й и 2-й по 5 рёбер, 3-й (боковой) — 8 рёбер.
  • прихожая: Округляем до 1200 и получаем два радиатора по 4 ребра.
  • ванная: . Тут температура должна быть немного выше, получается 1 радиатор с 4-мя рёбрами.
  • туалет: Округляем до 450 и получаем три ребра.
  • кухня: Округляем до 2100 и получаем два радиатора по 7 рёбер.

В конечном результате мы видим, что нам необходимо 12 радиаторов общей мощностью:

Исходя из последних расчётов, видно, что наша индивидуальная система отопления без проблем справится с возложенной на неё нагрузкой.

Выбор труб

Трубопровод для системы индивидуального отопления является средой для транспортировки тепловой энергии (в частности, нагретой воды). На отечественном рынке трубы для монтажа систем представлены в трёх основных видах:

Металлические трубы имеют ряд значительных недостатков. Кроме того, что они обладают большим весом и требуют специального оборудования для монтажа, а также наличие опыта, они ещё подвержены коррозии и могут накапливать статическое электричество. Хороший вариант — медные трубы, они способны выдерживать температуру до 200 градусов и давление около 200 атмосфер. Но медные трубы отличаются спецификой в монтаже (требуется специальное оборудование, серебряный припой и большой опыт работы), кроме того их стоимость очень велика. Самым популярным вариантом считаются пластиковые трубы. И вот почему:

  • они имеют алюминиевую основу, которая с двух сторон покрыта пластмассой, благодаря чему они обладают огромной прочностью;
  • они абсолютно не пропускают кислород, что позволяет свести к нулю процесс образования коррозии на внутренних стенках;
  • благодаря алюминиевому армированию у них очень низкий коэффициент линейного расширения;
  • пластиковые трубы антистатичны;
  • обладают малым гидравлическим сопротивлением;
  • не требуется специальных навыков для монтажа.

Монтаж системы

Первым делом нам требуется установить секционные радиаторы. Их надо размещать строго под окнами, тёплый воздух от радиатора будет препятствовать проникновению холодного воздуха из окна. Для монтажа секционных радиаторов не понадобится никакого специального оборудования, лишь перфоратор и строительный уровень. Необходимо строго придерживаться одного правила: все радиаторы в доме должны быть смонтированы строго на одном горизонтальном уровне, от этого параметра зависит общая циркуляция воды в системе. Также соблюдайте вертикальное расположение рёбер радиатора.

После монтажа радиаторов можно приступать к прокладке труб. Необходимо заранее промерить общую длину труб, а также посчитать количество всевозможных фитингов (колен, тройников, заглушек и пр.). Для монтажа пластиковых труб понадобится всего три инструмента — рулетка, ножницы для труб и паяльник. На большинстве таких труб и фитингов есть лазерная перфорация в виде насечек и направляющих линий, что даёт возможность по месту выполнять монтаж правильно и ровно. Работая с паяльником, следует придерживаться только одного правила — после того как вы расплавили и состыковали концы изделий, ни в коем случае не прокручивайте их, если с первого раза не получилось припаять ровно, иначе возможна течь в этом месте. Лучше заранее потренируйтесь на кусочках, которые пойдут в отходы.

Дополнительные приборы

По статистике система с пассивной циркуляцией воды будет исправно функционировать, если площадь помещения не превышает 100–120 м 2 . В противном случае необходимо использовать специальные насосы. Конечно, существует ряд котлов, в которые уже встроены насосные системы и они сами обеспечивают циркуляцию воды по трубам, если у вас не такой, то следует приобрести его отдельно.

На отечественном рынке их выбор очень велик, к тому же они отвечают всем необходимым требованиям — потребляют мало электроэнергии, бесшумны и малогабаритны. Монтируют циркуляционные насосы на концах веток отопления. Таким образом, насос прослужит дольше, так как он не будет находиться под прямым воздействием горячей воды.

Пример однотрубной системы отопления с принудительной циркуляцией: 1 — котёл; 2 — группа безопасности; 3 — радиаторы отопления; 4 — игольчатый кран; 5 — расширительный бак; 6 — слив; 7 — водопровод; 8 — фильтр грубой очистки воды; 9 — циркуляционный насос; 10 — шаровые краны

Из всего вышеперечисленного становится ясно, что с монтажом подобной системы без труда справятся два или три человека, для этого не требуется обладать специальными профессиональными навыками, главное, уметь пользоваться элементарными строительными инструментами. В нашей статье мы рассмотрели систему индивидуального отопления, собранную с помощью стандартных комплектующих, их цена и общедоступность позволят почти каждому у себя дома смонтировать аналогичную систему отопления.

Расчет систем отопления (часть 3 — Расчет радиаторов)

Итак, исходя из предыдущих статей стало ясно, что комфортные параметры внутреннего воздуха в помещениях в зимний период зависят напрямую от того соответствует ли мощность системы отопления здания количеству потерь тепла. В устоявшемся режиме здания все теплопотери должны быть равны мощности системы отопления. Это и называется тепловым балансом здания.

Читайте также:  Расчет объема трубы: как рассчитать по формулам в литрах и в м3

Тепловой баланс здания

Если в помещении есть много источников выделения тепла (тепловыделения от большого количества людей, от солнечной радиации или иных процессов, сопровождающихся выделением тепла), то данные показатели также должны быть учтены в тепловом балансе здания.

Теплопотери и теплопоступления в помещении общественного здания.

Но, как правило, в условиях континентального климата для жилых зданий этими показателями пренебрегают, устанавливая системы автоматики на системы отопления здания или термостатические вентиля на приборы отопления. Этими мероприятиями можно поддерживать постоянную температуру в помещениях независимо от колебаний температуры наружного воздуха или внутренних тепловых возмущений. В производственных или административных зданиях такие теплопоступления обычно компенсируются системами вентиляции.

Итоговый тепловой баланс здания определяется следующим образом:

Тепловой баланс здания определяется по максимальным значениям потерь тепла в зимний период года при минимальных расчетных температурах наружного воздуха, влажности и скорости ветра для конкретного региона строительства. Все расчетные параметры регламентируются в нормативной документации, а, в частности, в СНиП 23-01-99 «Строительная климатология».

Для рассматриваемого примера теплопотери здания, а конкретно нагрузка на систему отопления, могут значительно отличаться по каждому помещению, поэтому использование удельных показателей, рассчитанных ранее носит чисто информационный характер. На практике следует выполнить точный теплотехнический расчет.

Итак, тепловой баланс для помещения площадью 8,12 м? выглядит следующим образом:

Расчет и подбор радиаторов отопления.

Радиаторы или конвекторы являются главными элементами отопительной системы, так как их основной функцией является передача тепла от теплоносителя воздуху в помещении или поверхностям комнаты. Мощность радиаторов при этом должна четко соответствовать тепловым потерям по помещениям. Из предыдущих разделов цикла статей видно, что укрупнено мощность радиаторов можно определить по удельным показателям по площади или объему комнаты.

Так, для отопления помещения в 20 м? с одним окном требуется в среднем установить прибор отопления мощностью 2 кВт, а если учесть небольшой запас на поверхность в размере 10-15%, то мощность радиатора составит 2,2 кВт ориентировочно. Этот метод подбора радиаторов является достаточно грубым, так как не учитывает много значимых особенностей и строительных характеристик здания. Более точным является подбор радиаторов на основании теплотехнического расчета жилого дома, который выполняется специализированными проектными организациями.

Основным параметром для подбора типоразмера прибора отопления является его тепловая мощность. А в случае с секционными алюминиевыми или биметаллическими радиаторами указывается мощность одной секции. Наиболее часто используемыми в системах отопления радиаторами являются приборы с межосевым расстоянием 350 или 500 мм, выбор которых основан, прежде всего на конструкции окна и отметке подоконника относительно финишного напольного покрытия.

Мощность 1 секции
радиатора
по паспорту, Вт
Площадь комнаты, м2
10121416182022
Количество секций
140891012131516
150781011121415
16078910121314
1806789101213
1906789101112
200567891011

В техническом паспорте на приборы отопления производители указывают тепловую мощность применительно к каким-либо температурным условиям. Стандартными являются параметры теплоносителя 90-70 °C, в случае низкотемпературного отопления тепловую мощность следует корректировать согласно коэффициентам, указанных в технической документации.

В этом случае мощность приборов отопления определяется следующим образом:

?T является средней величиной между температурой подающего и обратного теплоносителя и определяется по формуле:

Паспортными данными является мощность радиатора Q и температурный напор, определенные в стандартных условиях. Произведение коэффициентов k*A является величиной постоянной и определяется сначала для стандартных условий, а затем можно подставить в формулу для определения фактической мощности радиатора, который будет работать в системе отопления с параметрами, отличающимися от принятых.

Для каркасного дома, рассматриваемого в качестве примера с толщиной изоляции 150 мм, подбор радиатора для помещения площадью 8,12 м2 будет выглядеть следующим образом.

Ранее мы определили, что удельные теплопотери для углового помещения с учетом инфильтрации 125 Вт/м2, значит, мощность радиатора должна составлять не менее 1 015 Вт, а с запасом в 15% 1 167 Вт.

Для установки доступен радиатор мощностью 1,4 кВт при параметрах теплоносителя 90/70 градусов, что соответствует температурному напору ?T= 60 градусов. Планируемая система отопления будет работать на параметрах воды 80/60 градусов (?T=50) Следовательно, чтобы удостовериться в том, что радиатор сможет полностью перекрыть теплопотери помещения необходимо определить его фактическую мощность.

Для этого, определив значение k*A=1400/60=23,3 Вт/град, определяем фактическую мощность Qфакт=23,3*50=1167 Вт, что полностью удовлетворяет требуемой тепловой мощности прибора отопления, который должен быть установлен в данном помещении.

Видео ролик на тему расчета мощности радиатора:

Влияние способов подключения и места установки на теплоотдачу радиаторов

При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.

Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.

Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.

Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.

Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.

Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.

Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.

В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:

  • Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
  • Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
  • Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.

Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.

Способы подключения приборов отопления и варианты подвода подающего трубопровода также влияют на конечную мощность и теплоотдачу радиатора.

Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.

Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.

Тепловой расчет теплообменных аппаратов

Введение

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет следующий вид:

  • Q – размер теплового потока, Вт;
  • F – площадь рабочей поверхности, м2;
  • k – коэффициент передачи тепла;
  • Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

  • G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • cp1 и cp2 – удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1 вх ;t1 вых и t2 вх ;t2 вых ) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

  • Температура греющего носителя при входе t1 вх = 14 ºС;
  • Температура греющего носителя при выходе t1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t2 вых = 12 ºС;
  • Расход массы греющего носителя G1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости ср =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .
Читайте также:  Что нужно для проектирования вентиляции: порядок составления проекта системы воздухообмена

1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).

ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Расчет отопления частного дома

Для климата средней полосы тепло в доме является насущной потребностью. Вопрос отопления в квартирах решается районными котельными, ТЭЦ или тепловыми станциями. А как же быть владельцу частного жилого помещения? Ответ один — установка отопительной техники, необходимой для комфортного проживания в доме, она же — автономная система отопления. Чтобы не получить в результате установки жизненно необходимой автономной станции груду металлолома, к проектированию и монтажу следует отнестись скрупулёзно и с большой ответственностью.

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт., 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Итого: суммарные теплопотери комнаты в самые холодные дни равны 2,81 кВт. Это число записывается со знаком минус и теперь известно сколько тепла необходимо подать в комнату для комфортной температуры в ней.

Расчет гидравлики

Переходим к наиболее сложному и важному гидравлическому расчету — гарантии эффективной и надежной работы ОС.

Единицами расчета гидравлической системы являются:

  • диаметр трубопровода на участках отопительной системы;
  • величины давлений сети в разных точках;
  • потери давления теплоносителя;
  • гидравлическая увязка всех точек системы.

Перед расчетом нужно предварительно выбрать конфигурацию системы, тип трубопровода и регулирующей/запорной арматуры. Затем определиться с видом приборов отопления и их расположением в доме. Составить чертеж индивидуальной системы отопления с указанием номеров, длины расчетных участков и тепловых нагрузок. В заключении выявить основное кольцо циркуляции, включающее поочередные отрезки трубопровода, направленные к стояку (при однотрубной системе) или к самому уделенному прибору отопления (при двухтрубной системе) и обратно к источнику тепла.

При любом режиме эксплуатации СО необходимо обеспечить бесшумность работы. В случае отсутствия неподвижных опор и компенсаторов на магистралях и стояках возникает механический шум из-за температурного удлинения. Использование медных или стальных труб способствует распространению шума по всей системе отопления.

Из-за значительной турбулизации потока, который возникает при увеличенном движении теплоносителя в трубопроводе и усиленном дросселировании потока воды регулирующим клапаном, возникает гидравлический шум. Поэтому, учитывая возможность возникновения шума, необходимо на всех этапах гидравлического расчета и конструирования — подбор насосов и теплообменников, балансовых и регулирующих клапанов, анализ температурных удлинений трубопровода — выбирать соответствующие для заданных исходных условий оптимальное оборудование и арматуру.

Изготовить отопление в частном доме возможно и самостоятельно. Возможные варианты представлены в данной статье: https://teplo.guru/sistemy/varianty-otopleniya-doma-svoimi-rukami.html

Перепады давления в СО

Гидравлический расчет включает имеющиеся перепады давления на вводе отопительной системы:

  • диаметры участков СО
  • регулирующие клапаны, которые устанавливаются на ветках, стояках и подводках приборов отопления;
  • разделительные, перепускные и смесительные клапаны;
  • балансовые клапаны и величины их гидравлической настройки.

При пуске отопительной системы балансовые клапаны настраиваются на схемные параметры настройки.

На схеме отопления обозначается расчетная тепловая нагрузка каждого из отопительных приборов, которая равна тепловой расчетной нагрузке помещения, Q4. В случае наличия более одного прибора необходимо разделить величину нагрузки между ними.

Далее необходимо определить основное циркуляционное кольцо. В однотрубной системе количество колец равно числу стояков, а в двухтрубной — количеству приборов отопления. Клапаны баланса предусматривают для каждого кольца циркуляции, поэтому количество клапанов в однотрубной системе равно числу вертикальных стояков, а в двухтрубной — количеству приборов отопления. В двухтрубной СО балансовые вентили располагают на обратной подводке прибора отопления.

Санитарные нормы и правила, касающиеся отопления в частном доме, представлены здесь: https://teplo.guru/normy/snipy-po-otopleniyu.html

Расчет циркуляционного кольца включает:

  • систему с попутным движением воды. В однотрубных системах кольцо располагается в самом нагруженном стояке, в двухтрубных — в нижнем приборе отопления более нагруженного стояка;
  • систему с тупиковым движением теплоносителя. В однотрубных системах кольцо располагается в самом нагруженном и удаленном стояке, в двухтрубных — в нижнем приборе отопления нагруженного удаленного стояка;
  • горизонтальную систему, где кольцо располагается в более нагруженной ветви 1-го этажа.

Необходимо из двух направлений расчета гидравлики основного кольца циркуляции выбрать одно.

При первом направлении расчета, диаметр трубопровода и потери давления в кольце циркуляции определяются по задаваемой скорости движения воды на каждом участке основного кольца с последующим подбором насоса циркуляции. Напор насоса Pн, Па определяется в зависимости от вида отопительной системы:

  • для вертикальных бифилярных и однотрубных систем: Рн = Pс. о. — Ре
  • для горизонтальных бифилярных и однотрубных, двухтрубных систем:Рн = Pс. о. — 0,4Ре
  • Pс.о — потери давления в основном кольце циркуляции, Па;
  • Ре — естественное циркуляционное давление, которое возникает вследствие понижения температуры теплоносителя в трубах кольца и приборах отопления, Па.

В горизонтальных трубах скорость теплоносителя принимают от 0,25 м/с, для возможности удаления воздуха из них. Оптимальная расчетная движения теплоносителя в трубах из стали до 0,5 м/с, полимерных и медных — до 0,7 м/с.

После расчета основного кольца циркуляции производят расчет остальных колец путем определения известного давления в них и подбора диаметров по примерной величине удельных потерь Rср.

Применяется направление в системах с местным теплогенератором, в СО при зависимом (при недостаточном давлении на вводе тепловой системы) или независимом присоединении к тепловым СО.

Второе направление расчета заключается в подборе диаметра трубы на расчетных участках и определении потерь давления в кольце циркуляции. Рассчитывается по изначально заданной величине циркуляционного давления. Диаметры участков трубопровода подбирают по примерной величине удельных потерь давления Rср. Этот принцип применяется в расчетах отопительных систем с зависимым присоединением к тепловым сетям, с естественной циркуляцией.

Для исходного параметра расчета нужно определить величину имеющегося циркуляционного перепада давления PP, где PP в системе с естественной циркуляцией равно Pe, а в насосных системах — от вида отопительной системы:

  • в вертикальных однотрубных и бифилярных системах: PР = Рн + Ре
  • в горизонтальных однотрубных, двухтрубных и бифилярных системах: PР = Рн + 0,4.Ре

Расчет трубопроводов СО

Следующей задачей расчета гидравлики является определение диаметра трубопровода. Расчет производится с учетом циркуляционного давления, установленном для данной СО, и тепловой нагрузки. Следует отметить, что в двухтрубных СО с водяным теплоносителем главное циркуляционное кольцо располагается в нижнем приборе отопления, более нагруженного и удаленного от центра стояка.

По формуле Rср = β*?рр/∑L; Па/м определяем среднее значение на 1 метр трубы удельной потери давления от трения Rср, Па/м, где:

  • β — коэффициент, учитывающий часть потери давления на местные сопротивления от общей суммы расчётного циркуляционного давления (для СО с искусственной циркуляцией β=0,65);
  • рр — имеющееся давление в принятой СО, Па;
  • ∑L — сумма всей длины расчётного кольца циркуляции, м.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Например: один кубометр кирпичного дома с качественными стеклопакетами потребует 0,034 кВт; из панели — 0,041 кВт; возведенные согласно всех современных требований — 0,020 кВт.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Например: комната 6x4x2,5 м панельного дома (тепловой поток дома 0,041 кВт), объем комнаты V = 6x4x2,5 = 60 куб. м. оптимальный объем теплоэнергии Q = 60×0, 041 = 2,46 кВт3, количество секций N = 2,46 / 0,16 = 15,375 = 16 секций.

Характеристики радиаторов

Тип радиатора

Тип радиатораМощность секцииКоррозийное воздействие кислородаОграничения по PhКоррозийное воздействие блуждающих токовДавление рабочее/ испытательноеГарантийный срок службы (лет)
Чугунный1106.5 — 9.06−9 /12−1510
Алюминиевый175−1997— 8+10−20 / 15−303−10
Трубчатый
Стальной
85+6.5 — 9.0+6−12 / 9−18.271
Биметаллический199+6.5 — 9.0+35 / 573−10

Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.

Видео осуществления гидравлического расчета

Ссылка на основную публикацию