Расчет диаметра газопровода: пример расчета и нюансы монтажа газовой сети

Гидравлический расчет газопроводов(методика СП 42-101-2003)

На портале можно провести онлайн гидравлический расчет газопроводов в теме «ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ (ГАЗОПРОВОДОВ)».

На данной странице изложена методика на основании которой составлен расчет.

Пример гидравлического расчета:

РАСЧЕТ ДИАМЕТРА ГАЗОПРОВОДА И ДОПУСТИМЫХ ПОТЕРЬ ДАВЛЕНИЯ

3.21 Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.

3.22 Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.

3.23 Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оптимальным распределением расчетной потери давления между участками сети.

При невозможности или нецелесообразности выполнения расчета на компьютере (отсутствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или по номограммам (приложение Б), составленным по этим формулам.

3.24 Расчетные потери давления в газопроводах высокого и среднего давления принимаются в пределах категории давления, принятой для газопровода.

3.25 Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 180 даПа, в том числе в распределительных газопроводах 200 даПа, в газопроводах-вводах и внутренних газопроводах — 60 даПа.

3.26 Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и бытовых предприятий и организаций коммунально-бытового обслуживания принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.

3.27 Падение давления на участке газовой сети можно определять:

— для сетей среднего и высокого давлений по формуле

где Рн — абсолютное давление в начале газопровода, МПа;

Рк — абсолютное давление в конце газопровода, МПа;

l — коэффициент гидравлического трения;

l — расчетная длина газопровода постоянного диаметра, м;

d — внутренний диаметр газопровода, см;

r — плотность газа при нормальных условиях, кг/м 3 ;

Q — расход газа, м 3 /ч, при нормальных условиях;

— для сетей низкого давления по формуле

где Рн — давление в начале газопровода, Па;

Рк — давление в конце газопровода, Па;

Примечание сайта: Выбор диаметров газопровода на стадии гидравлического расчета происходит по сортаменту выбранной трубы или из типового ряда условных диаметров. Данные из сортамента труб можно получить онлайн на сайте в программе «СОРТАМЕНТ ТРУБ КРУГЛОГО СЕЧЕНИЯ (СТАЛЬНЫХ, ПОЛИЭТИЛЕНОВЫХ И Т.Д.). КАЛЬКУЛЯТОР ТРУБ ОНЛАЙН».

3.28 Коэффициент гидравлического трения l определяется в зависимости от режима движения газа по газопроводу, характеризуемого числом Рейнольдса,

где v — коэффициент кинематической вязкости газа, м 2 /с, при нормальных условиях;

Q, d — обозначения те же, что и в формуле (3), и гидравлической гладкости внутренней стенки газопровода, определяемой по условию (6),

где Re — число Рейнольдса;

(Примечание :в формуле №6 допущена опечатка. Вместо знака равно должен быть знак умножения)

n — эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных — 0,01 см, для бывших в эксплуатации стальных — 0,1 см, для полиэтиленовых независимо от времени эксплуатации — 0,0007 см;

d — обозначение то же, что и в формуле (3).

В зависимости от значения Re коэффициент гидравлического трения l определяется:

— для ламинарного режима движения газа Re

— для критического режима движения газа Re = 2000-4000

— при Re > 4000 — в зависимости от выполнения условия (6);

— для гидравлически гладкой стенки (неравенство (6) справедливо):

— при 4000

— при Re > 100 000

— для шероховатых стенок (неравенство (6) несправедливо) при Re > 4000

где n — обозначение то же, что и в формуле (6);

d — обозначение то же, что и в формуле (3).

3.29 Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке.

3.30 Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5—10 %.

3.31 Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле (12)

где l1 — действительная длина газопровода, м;

— сумма коэффициентов местных сопротивлений участка газопровода;

d — обозначение то же, что и в формуле (3);

l — коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода по формулам (7)—(11).

3.32 В тех случаях когда газоснабжение СУГ является временным (с последующим переводом на снабжение природным газом), газопроводы проектируются из условий возможности их использования в будущем на природном газе.

При этом количество газа определяется как эквивалентное (по теплоте сгорания) расчетному расходу СУГ.

3.33 Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле (13)

где l — коэффициент гидравлического трения;

V — средняя скорость движения сжиженных газов, м/с.

С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются: во всасывающих трубопроводах — не более 1,2 м/с; в напорных трубопроводах — не более 3 м/с.

Коэффициент гидравлического трения l определяется по формуле (11).

3.34 Расчет диаметра газопровода паровой фазы СУГ выполняется в соответствии с указаниями по расчету газопроводов природного газа соответствующего давления.

3.35 При расчете внутренних газопроводов низкого давления для жилых домов допускается определять потери давления газа на местные сопротивления в размере, %:

— на газопроводах от вводов в здание:

до стояка — 25 линейных потерь

— на внутриквартирной разводке:

при длине разводки 1—2 м — 450 линейных потерь

3.36 При расчете газопроводов низкого давления учитывается гидростатический напор Hg, даПа, определяемый по формуле (14)

где g — ускорение свободного падения, 9,81 м/с 2 ;

h — разность абсолютных отметок начальных и конечных участков газопровода, м;

rа — плотность воздуха, кг/м 3 , при температуре 0 °С и давлении 0,10132 МПа;

r — обозначение то же, что в формуле (3).

3.37 Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка потерь давления в кольце допускается до 10 %.

3.38 При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

3.39 При выполнении гидравлического расчета газопроводов, проведенного по формулам (5)—(14), а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, расчетный внутренний диаметр газопровода следует предварительно определять по формуле (15)

где dp — расчетный диаметр, см;

А, В, m, m1 — коэффициенты, определяемые по таблицам 6 и 7 в зависимости от категории сети (по давлению) и материала газопровода;

Q — расчетный расход газа, м 3 /ч, при нормальных условиях;

DРуд — удельные потери давления (Па/м — для сетей низкого давления, МПа/м — для сетей среднего и высокого давления), определяемые по формуле (16)

DРдоп — допустимые потери давления (Па — для сетей низкого давления, МПа/м — для сетей среднего и высокого давления);

L — расстояние до самой удаленной точки, м.

Категория сетиА
Сети низкого давления10 6 / (162 p 2 ) = 626
Сети среднего и высокого давленияP = 0,101325 МПа, Pm — усредненное давление газа (абсолютное) в сети, МПа.
МатериалВmm1
Сталь0,02225
Полиэтилен, v — кинематическая вязкость газа при нормальных условиях, м 2 /с.1,754,75

3.40 Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший — для стальных газопроводов и ближайший меньший — для полиэтиленовых.

Гидравлический расчет газопровода

В основе гидравлического расчета газопроводной сети лежит определение оптимальных диаметров газопроводов, обеспечивающих пропуск необходимых количеств газа при допустимых перепадах давления. Расчет ведется исходя из максимально возможных расходов газа в часы максимального газопотребления. При этом учитываются часовые расходы газа на нужды производственных (промышленных и сельскохозяйственных), коммунально-бытовых потребителей, а также на индивидуально-бытовые нужды населения (отопление, горячее водоснабжение).

Как правило, при гидравлическом расчете газопроводов среднего и высокого давления расчетные расходы газа потребителями принимаются в качестве сосредоточенных нагрузок, для сетей низкого давления учитывается также и равномерно распределенная нагрузка. Отличительной особенностью систем газоснабжения среднего давления с установкой газорегуляторных пунктов у каждого потребителя или небольшой группы потребителей населенного пункта является применимость к ним принципа расчета сетей с равномерно распределенными нагрузками.

При движении газа по трубопроводам происходит постепенное снижение первоначального давления за счет преодоления сил трения и местных сопротивлений.

При проектировании трубопроводов выбор размеров труб осуществляется на основании гидравлического расчета, определяющего внутренний диаметр труб для пропуска необходимого количества газа при допустимых потерях давления или, наоборот, потери давления при транспорте необходимого количества газа по срубам заданного диаметра.

Сопротивление движению газа в трубопроводах слагается из линейных сопротивлений трения и местных сопротивлений: сопротивления трения «работают» на всей протяженности трубопроводов, а местные создаются только в пунктах изменения скоростей и направления движения газа (углы, тройники и т.д.). Подробный гидравлический расчет газопроводов осуществляется по формулам, приведенным в СП 42-101–2003, в которых учтены как режим движения газа, так и коэффициенты гидравлического сопротивления газопроводов. Здесь приводится сокращенный вариант.
Для расчетов внутреннего диаметра газопровода следует воспользоваться формулой:

где dp — расчетный диаметр, см; А, m, m1 — коэффициенты, зависящие от категории сети (по давлению) и материала газопровода; Q — расчетный расход газа, м 3 /ч, при нормальных условиях; ΔРуд — удельные потери давления (Па/м для сетей низкого давления)

Здесь ΔРдоп — допустимые потери давления (Па); L — расстояние до самой удаленной точки, м. Коэффициенты А, m, m1 определяются по приведенной ниже таблице.

Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший — для стальных газопроводов и ближайший меньший — для полиэтиленовых.

Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 1,80 кПа (в том числе в распределительных газопроводах — 1,20 кПа), в газопроводах-вводах и внутренних газопроводах — 0,60 кПа.

Для расчета падения давления необходимо определить такие параметры, как число Рейнольдса, зависящее от характера движения газа, и коэффициент гидравлического трения λ. Число Рейнольдса — безразмерное соотношение, отражающее, в каком режиме движется жидкость или газ: ламинарном или турбулентном.

Переход от ламинарного к турбулентному режиму происходит по достижении так называемого критического числа Рейнольдса Reкp. При Re Reкp — возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения.

Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно.

Число Рейнольдса есть отношение сил инерции, действующих в потоке, к силам вязкости. Также число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине.
Число Рейнольдса применительно к углеводородным газам определяется по следующему соотношению:

где Q — расход газа, м 3 /ч, при нормальных условиях; d — внутренний диаметр газопровода, см; π – число пи; ν — коэффициент кинематической вязкости газа при нормальных условиях, м 2 /с (см. таб. 2.3).
Диаметр газопровода d должен отвечать условию:

где n — эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной:

– для новых стальных — 0,01 см;
– для бывших в эксплуатации стальных — 0,1 см;
– для полиэтиленовых независимо от времени эксплуатации — 0,0007 см.

Коэффициент гидравлического трения λ определяется в зависимости от режима движения газа по газопроводу, характеризуемого числом Рейнольдса. Для ламинарного режима движения газа (Re ≤ 2000):

Для критического режима движения газа (Re = 2000–4000):

λ = 0,0025 Re 0,333 (5.6)

Eсли значение числа Рейнольдса превышает 4000 (Re > 4000), возможны следующие ситуации. Для гидравлически гладкой стенки при соотношении 4000 0,25 (5.7)

При значении Re > 100000:

λ = 1/(1,82lgRe – 1,64) 2 (5.8)

Для шероховатых стенок при Re > 4000:

Читайте также:  Лупинг газопровода: его функции и особенности обустройства для газопровода

λ = 0,11[(n/d) + (68/Re)] 0,25 (5.9)

После определения вышеперечисленных параметров падение давления для сетей низкого давления вычисляется по формуле

где Pн — абсолютное давление в начале газопровода, Па; Рк — абсолютное давление в конце газопровода, Па; λ — коэффициент гидравлического трения; l — расчетная длина газопровода постоянного диаметра, м; d — внутренний диаметр газопровода, см; ρ — плотность газа при нормальных условиях, кг/м 3 ; Q — расход газа, м 3 /ч, при нормальных условиях;

Расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке. Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) учитываются путем увеличения фактической длины газопровода на 5–10%.

Для наружных надземных и внутренних газопроводов расчетная длина газопроводов определяется по формуле:

где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода; d — внутренний диаметр газопровода, см; λ — коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода.

Местные гидравлические сопротивления в газопроводах и вызываемые ими потери давления возникают при изменении направления движения газа, а также в местах разделения и слияния потоков. Источники местных сопротивлений — переходы с одного размера газопровода на другой, колена, отводы, тройники, крестовины, компенсаторы, запорная, регулирующая и предохранительная арматура, конденсатосборники, гидравлические затворы и другие устройства, приводящие к сжатию, расширению и изгибу потоков газа. Падение давления в местных сопротивлениях, перечисленных выше, допускается учитывать путем увеличения расчетной длины газопровода на 5–10%. Расчетная длина наружных надземных и внутренних газопроводов

где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода длиной l1, lэ — условная эквивалентная длина прямолинейного участка газопровода, м, потери давления на котором равны потерям давления в местном сопротивлении со значением коэффициента ξ = 1.

Эквивалентная длина газопровода в зависимости от режима движения газа в газопроводе:
— для ламинарного режима движения

— для критического режима движения газа

lэ = 12,15d 1,333 v 0,333 /Q 0,333 (5.14)

— для всей области турбулентного режима движения газа

При расчете внутренних газопроводов низкого давления для жилых домов допустимые потери давления газа на местные сопротивления, % от линейных потерь:
– на газопроводах от вводов в здание до стояка — 25;
– на стояках — 20;
– на внутриквартирной разводке — 450 (при длине разводки 1–2 м), 300 (3–4 м), 120 (5–7 м) и 50 (8–12 м),

Приближенные значения коэффициента ξ для наиболее распространенных видов местных сопротивлений приведены в табл. 5.2.
Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле:

H = 50λV 2 ρ/d (5.12)

где λ — коэффициент гидравлического трения (определяется по формуле 5.7); V — средняя скорость движения сжиженных газов, м/с.

С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются:
– во всасывающих трубопроводах — не более 1,2 м/с;
– в напорных трубопроводах — не более 3 м/с.

При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле

где g — ускорение свободного падения, 9,81 м/с 2 ; h — разность абсолютных отметок начальных и конечных участков газопровода, м; ρа — плотность воздуха, кг/м 3 , при температуре 0°С и давлении 0,10132 МПа; ρ — плотность газа при нормальных условиях кг/м 3 .

При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

Таблица 5.2. Коэффициенты местных сопротивлений ξ при турбулентном движении газа (Re > 3500)

Монтаж газопровода: правила и особенности

Все работы до точки подключения магистрали к частной сети газопотребления – дело ГРО, а все, что делается внутри двора, как снаружи, так и в доме, уже забота владельца.

Действующим законодательством в сфере газификации сегодня допускается монтаж газовых трубопроводов от точки подключения (ввода) к приборам газопотребления не только «дочками» ГРО и другими сертифицированными компаниями, но и самостоятельно. Учитывая, что именно прокладка внутренних сетей от ввода к дому и внутренняя разводка зачастую обходятся дороже самого подключения, для многих умельцев появилась реальная возможность прилично сэкономить на газификации. Другое дело, что проблемы могут возникнуть при приемке сетей газовщиками, даже если все сделано в полном соответствии с нормативами, не говоря о возможных нарушениях. Тем не менее, и делают сами, и «продавить» приемщиков на подписание акта о готовности умудряются. А какой должна быть домовая сеть, чтобы не вызвать нареканий, попробуем разобраться.

Содержание

  • Нормативные акты и основные правила
  • Прокладка наружного трубопровода
  • Как решать вопрос с опрессовкой

Нормативы для строительно-монтажных работ при создании домашней сети газопотребления

Наличие проекта для ИЖС не требуется, так прописано в Градостроительном кодексе, да и в ПП № 1314 указано, что ГРО может только «проверить смонтированную заявителем сеть газопотребления в процессе мероприятий, проводимых исполнителем по подключению до фактического пуска газа». То есть, проект иметь рекомендуется, как и во всяком строительстве, но не обязательно; и уж тем более, его отсутствие не может стать причиной для отказа в приемке. Что касается непосредственно монтажных работ, то тут действует актуализированная редакция СНиП 42-01-2002 – СП 62.13330.2011 с изменением N 1 и N 2, «Газораспределительные системы».

Чтобы не копировать огромное количество информации, можно выделить ряд основных правил, которые должны строго соблюдаться:

  • При проводке труб через перекрытия или ограждающие конструкции, используется гильза, заделываемая эластичным материалом.
  • В местах проводки не допускаются соединения труб.
  • Для внутридомовой сети применяют только сварные соединения труб, резьбовая фиксация и фланцевые соединения допустимы только для подсоединения запорной арматуры, специализированных приборов и гибких металлизированных шлангов (диаметр 10 мм) для перехода на газопотребляющее оборудование.
  • Вся устанавливаемая арматура должна быть доступна для обслуживания.
  • Внутри дома газопроводы монтируются по стенам без уклона, стояки строго вертикально.
  • Высота от пола до газовых труб составляет от 220 мм при ровной плоскости потолка и 200 мм, если потолок с уклоном.
  • Расстояние от трубы до стены не меньше половины ее диаметра, но не больше 100 мм.
  • Газовые трубы не должны пересекать ни оконные либо дверные проемы, ни вентиляцию.
  • Минимальное расстояние от магистрали до электрощитка составляет 0,3 метра.
  • Между газовой трубой и параллельно идущей электропроводкой должно быть минимум 250 мм, при открытом способе прокладки кабеля, и минимум 50 мм (от грани трубы) если проводка скрытая.
  • При пересечении магистрали и кабеля расстояние между ними должно быть не меньше 100 мм, допустима прокладка без зазора, ели кабель закрыт широкой резиновой или эбонитовой оболочкой.
  • Если газопровод пересекает водопроводные, канализационные либо другие трубы, расстояние между ними в свету не меньше 20 мм.
  • При внутреннем монтаже расстояние от газового счетчика до котла либо плиты минимум 80 см.
  • Газовое водонагревательное оборудование не может быть смонтировано непосредственно в ванной комнате.
  • Трубопровод крепится либо на разъемные хомуты (если диаметр трубы до 40 мм), либо вплотную на кронштейны или подвески (если диаметр трубы более 40 мм).

Чем меньше будет швов и соединений, тем надежнее система, желательно сразу подбирать трубы достаточной длины. Даже без проекта не так уж сложно набросать в программе или графически схему разводки и подсчитать необходимые отрезки.

Прокладка наружного трубопровода

Наружный трубопровод, от точки подключения до ввода в дом, может быть либо надземным, металлическим (труба на стойках и на хомутах по стене), либо подземным, как металлическим, так и полимерным (ПЭ труба, проложенная траншейным способом). Если подземная труба заводится в дом в цоколе, потребуется так называемый «цокольный ввод» – неразъемное соединение между стальной и полиэтиленовой трубой. Такие соединения продаются в готовом виде, и цена вопроса вполне приемлема, удобно, что они идут уже с футляром (гильзой) для проводки.

Собираюсь пройти путь монтажа сети газопотребления своими руками. Думаю, многим будет полезно.

  • Покупается готовый цокольный ввод (желательно в конторе, где есть сварка).
  • На него сразу (прямо в конторе) наваривается 50 м ПЭ трубы и непосредственный ввод в дом.
  • Копается траншея, песок все дела, укладывается труба.
  • Вся разводка в доме делается МП компайп-газ, до счетчика резьбовыми соединениями на анаэробный герметик.
  • Приглашаются представители ГРО на обозрение творчества.
  • Все тоже, но без траншеи и трубы ПЭ.

При проводке подземным способом перед засыпкой линию обязательно тестируют на предмет утечек (воздух под давлением). Вывод трубы из земли закрывают защитной стальной гильзой, полость засыпают песком или заполняют эластичным материалом.

По нормативам надземный трубопровод может быть не только стальным, но и медным.

У меня четыре метра трубы до забора, невелики деньги. ГРО выведет под надземное подключение. Зачем мне с подземкой связываться? У меня цель в том, чтобы ГРО не нашлось до чего докопаться. Предвижу приемку через независимую экспертизу и суд, а с подземкой у них существенно добавляется возможностей. Мне важна простота, наглядность, и чтобы минимум требований. Медное соединение на пресс-фитингах как раз подходит. Про сталь и полиэтилен требований гора, куча различных испытаний может проводится. Для пресс-фитингов достаточно сертификата и механических испытаний. Ну, это мне так видится, после пятикратного прочтения всех СП и ГОСТ на эту тему. Примеры такого исполнения есть.

Как решать вопрос с опрессовкой

Готовая магистраль обязательно проверяется на герметичность. Опрессовка является обязательным этапом, так как позволяет выявить возможные дефекты швов и соединений. Если утечка теплоносителя в системе отопления чревата проблемами, связанными с переделкой, то утечка газа опасна для жизни. У профессионалов, занимающихся СМР, проблем с проверкой не возникает, а вот при самостоятельном монтаже сложнее.

Добрый день, форумчане!

Прошу поделиться опытом, как вы решали вопрос с опрессовкой при самостоятельном монтаже газопровода.

Ищите самый точный манометр, автомобильный компрессор и вперед. Я уже не помню, посмотрите СП, там есть допустимые утечки. Но если все сделано правильно, то давление будет стоять неделю нормально. Температурные погрешности, конечно, есть, но в целом стояло нормально. Только этот способ газовщиков не устроит – нужен гидравлический манометр. У меня по распоряжению сверху местный горгаз перемерял, т. к. установленный манометр не удовлетворял по классу точности.

По СП 62.13330.2011 допускается опрессовка частями и проверка герметичности малыми давлениями с применением гидравлического манометра. Класс точности манометров также указывается нормативами. «По завершении испытаний газопровода давление снижают до атмосферного, устанавливают автоматику, арматуру, оборудование, контрольно-измерительные приборы и выдерживают газопровод в течение 10 мин под рабочим давлением. Герметичность разъемных соединений проверяют мыльной эмульсией».

Несмотря на то, что ГРО очень неохотно «делятся своим хлебом», не только kam711, но и другие участники портала самостоятельно монтируют системы и добиваются подключения. Следовать ли их примеру или пойти по пути «наименьшего сопротивления» и заказать профессиональный монтаж – личное дело каждого.


Расчет внутридомовых газопроводов

Разрабатывая проект внутридомового газопровода, необходимо выбрать типы газовых приборов, разместить их в помещениях в соответствии с нормами, составить схему газовой сети и провести ее гидравлический расчет. Подбор и установку газовых приборов выполняют в соответствии с «Правилами безопасности в газовом хозяйстве» по нормам, указанным в § XI.4, исходя из количества жилых комнат, объема кухни, наличия ванной комнаты, дымоходов и вытяжных каналов из помещений, в которых предполагается установка приборов. Газовые счетчики предусматривают только на коммунальных объектах жилого дома: в столовых, ресторанах, отопительных котельных, прачечных и т. д. Диаметры участков сети выбирают из расчета обеспечения подачи необходимых (расчетных) количеств газа при допустимых потерях давления, которые по нормам СНиП для’дворовых и внутреннпх газопроводов принимают в пределах 40—60 мм вод. ст. Следует учесть, что потери давления в местных сопротивлениях значительны, поэтому необходим их точный учет. В зданиях с числом этажей более 10 величина расчетного перепада давления должна приниматься с учетом гидростатического напора, возникающего в газопроводах низкого давления из-за разности плотностей газа и воздуха и определяемого по формуле (VI.24).

Расчетные расходы газа на каждом из участков газовой сети определяют по сумме номинальных расходов газа всеми приборами, снабжаемыми через данный участок, с учетом коэффициента одновременности их действия, значения которого согласно СНиП II—Г.11—66 приведены в табл. XI.3. Коэффициент одновременности — это отношение действительного расхода газа группой

Читайте также:  Можно ли провести газ в гараж: особенности газификации гаражных помещений

Коэффициент одновременности А- для жилых зданий

Тип и количество установленных приборов

Примечание. В таблице не учтена установка газовых холодильников, так как незначительное потребление газа ими нс оказывает существенного влияния на к.

приборов в часы максимального газопотребления к суммарному номинальному расходу газа этими приборами. Таким образом, коэффициент одновременности показывает, какую долю от суммарного номинального расхода газа всеми приборами должен составить расчетный расход газа.

При нормальных условиях расчетный расход rasa, м 3 /ч,

где к0 — коэффициент одновременности для однотипных приборов или группы приборов; q — номинальный расход газа прибором или группой приборов, м 3 /ч; п — количество однотипных приборов или групп приборов.

Методику расчета газопроводов жилых и общественных зданий рассмотрим на примере; причем — только для одной секции дома.

Пример 25. Рассчитать систему газоснабжения четырехэтажного жилого дома природным газом. Плотность газа р = 0,73 кг/м 3 , кинематическая вязкость v = 14,3 X X 10″ 6 м 2 /сек, теплота сгорания QH 8500 ккал/м 3 . План секции дома, примыкающей к одной лестничной клетке, представлен на рис. XI.17. Точка 9 подключения абонентского ответвления находится в 4 м от здания. Объем кухонь дома 16 м 3 .

Рис. X 1.17. План секции дома с указанием газопроводов и газовых приборов (1-й этаж).

Решение. В соответствии с нормами СНиП, приведенными в § XI.4, размещаем газовые приборы. Во всех кухнях принимаем к установке (условно для простоты расчета) унифицированные газовые плиты ПГ4 и проточные газовые водонагреватели Л-3. На основании принятого оборудования составляем схему газоснабжения секции. Ответвление от распределительного газопровода принимаем подземным. Считая газ осушенным, предусматриваем цокольный ввод в лестничную клетку и от ввода делаем разводку газопроводов под потолком во все кухни первого этажа. По кухням через перекрытия поднимаем газовые стояки до последнего этажа и от них осуществляем подводку к газовым приборам всех квартир на каждом этаже. Принятую схему газоснабжения наносим на план этажа (см. рис. XI.17). Кроме того, вычерчиваем аксонометрическую схему газопроводов секции (рис. XI. 18). В качестве запорных устройств предусматриваем пробочные краны на вводе в здание, у оснований стояков на вводах в кухни и на опусках газопроводов к каждому газовому прибору. Предусмотренные краны также наносим на схему.

Гидравлический расчет газопроводов начинаем с наиболее удаленной от распределительного (уличного) газопровода точки — места подключения (точка 1 на рис. XI.18) водонагревателя на кухне четвертого этажа, снабжаемой газом от третьего стояка (Ст.З). При кажущейся на первый взгляд

Рис. X 1.18. Аксонометрическая схема газовой сети.

симметричности второго и третьего стояков относительно точки их слияния (6) третий стояк длиннее второго на участок 5—6. Весь путь газа в выбранном направлении разбиваем на расчетные участки, характеризующиеся изменением расхода газа или диаметра газопровода, ведя нумерацию их от самой удаленной точки сети к узлу подключения. В рассматриваемом примере получилось восемь расчетных участков: 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, 8—9. Определяем расчетные расходы газа на участках, считая, что установленные газовые приборы имеют следующие номинальные раоходы газа, м 3 /ч: четырехконфорочная плита — 1,2, водонагреватель Л-3 — 2,9. Коэффициент одновременности принимаем по табл. XI.3. Участок I—2 обеспечивает газом один водонагреватель с номинальным расходом газа 2,9 м 3 /ч. В этом случае к = 1. Следовательно, расчетный расход газа на участке 1—2 по формуле (XI.3) Vp j_* = 1-2,9-1 = 2,9 м 3 /ч. Участок 2—3 обеспечивает газом два прибора: водонагреватель и газовую плиту, ко —0,72 (см. табл. XI.4), число групп п 1. Следовательно, Vp в_3 — = 0,72 (2,9 ->- 1,2)-1 = 3,0 м 3 /ч. Аналогично для остальных участков, м 3 /ч: VP3_4 = 0,46 (2,9 + 1,2)-2 = 3,8; Vp 4_5 = 0,35 (2,9 + 1,2)• 3 –

Для дальнейших расчетов составляем таблицу по форме, приведенной в табл. XI.4, в которую заносим имеющиеся уже данные (графы 1и2). Задаемся диаметром участка 1—2. Из опыта проектирования целесообразно принять d1_2 = 20 мм. Заносим выбранный диаметр в графу 3, а в графу 4 — фактическую длину участка 1Х_2 = 2,4 м (берется по чертежу). По табл. VI.5 или по номограмме на рис. VI.6 для газопровода с внутренним диаметром d = 21,2 мм при расчетном расходе газа 2,9 м 3 /ч эквивалентная длина трубопровода, соответствующая коэффициенту местных потерь ? = 4, 1ЭКВ = = 0,56 м (заносим в графу 5). В графу 11 записываем местные сопротивления на участке 1—2 и по табл. VI.4 определяем соответствующие им коэффициенты местных сопротивлений. По схеме газовой сети (см. рис. XI.18) на участке 1—2 имеются: два угольника dy = 20 (3/4*) — ? = 2,1-2 = 4,2; один пробочный кран dy = 20 (3/4 я ) — ? = 2-1 = 2; один отвод 90 9 — ? = = 0,3-1 = 0,3; тройник проходной — ? = 1,0-1 = 1,0; 2,? = 7,5. Полученную сумму коэффициентов местных сопротивлений заносим в графу 6. В графу 7 записываем произведение суммы коэффициентов местных сопротивлений на эквивалентную длину, т. е. дополнительную условную длину участка 1Мп = /эКв2^доп == 0,56-7,5 = 4,2 м. Приведенная (расчетная) длина участка 1—2 1прИ0 >_2 = 1Х_2 + 1ДоП = 2,4 + 4,2 = 6,6 м (заносим в графу 8). По табл. VI.5 определяем удельную потерю давления, соответствующую d^2 = 21,2 мм и Ур >_2 2,9 м 3 /ч. Найденную величину удельной потери Дрг_2 = 0,33 кгс/м2 заносим в графу 9. Умножая величину удельной потери давления на приведенную длину участка, получаем суммарные потери давления па участке 1—2; ^Ар7_2 = Л^ прив 7_2= = 0,33-6,6 = 2,18 мм вод. ст. Результат вычислений заносим в графу 10.

Аналогично рассчитываем все остальные участки и полученными данными заполняем все строки табл. XI.4. Поправку на гидростатический напор не делаем, так как в здании только пять этажей. Полученные величины суммарных потерь давления на всех участках складываем, прибавляем к ним потери давления в арматуре и трубах плиты и водонагревателя, полагая их соответственно равными 5 и 10 мм вод. ст. Общая потеря давления должна быть не более 60 мм вод. ст. Если же она получилась завышенной или чрезмерно заниженной, то на отдельных участках сети надо изменить неудачно выбранные диаметры газопроводов и сделать перерасчет.

Ввиду однотипности принятых к установке газовых приборов для удобства монтажа газопроводов диаметры участков сети в остальных квартирах секции, да и в других секциях дома, можно принять в соответствии с расчетом третьего стояка. Но если ответвления газопроводов от других стояков существенно отличаются длинами и расходами газа в них от рассчитанного стояка, то необходимо провести расчет каждого стояка.

Гидравлический расчет абонентского ответвления и внутри

Как посчитать пропускную способность трубы для разных систем – примеры и правила

Прокладка трубопровода – дело не очень сложное, но достаточно хлопотное. Одной из самых сложных проблем при этом является расчет пропускной способности трубы, которая напрямую влияет на эффективность и работоспособность конструкции. В данной статье речь пойдет о том, как рассчитывается пропускная способность трубы.

Пропускная способность – это один из важнейших показателей любой трубы. Несмотря на это, в маркировке трубы этот показатель указывается редко, да и смысла в этом немного, ведь пропускная способность зависит не только от габаритов изделия, но и от конструкции трубопровода. Именно поэтому данный показатель приходится рассчитывать самостоятельно.

Способы расчета пропускной способности трубопровода

Перед тем, как посчитать пропускную способность трубы, нужно узнать основные обозначения, без которых проведение расчетов будет невозможным:

  1. Внешний диаметр. Данный показатель выражается в расстоянии от одной стороны наружной стенки до другой стороны. В расчетах этот параметр имеет обозначение Дн. Внешний диаметр труб всегда отображается в маркировке.
  2. Диаметр условного прохода. Это значение определяется как диаметр внутреннего сечения, который округляется до целых чисел. При расчете величина условного прохода отображается как Ду.

Расчет проходимости трубы может осуществляться по одному из методов, выбирать который необходимо в зависимости от конкретных условий прокладки трубопровода:

  1. Физические расчеты. В данном случае используется формула пропускной способности трубы, позволяющая учесть каждый показатель конструкции. На выборе формулы влияет тип и назначение трубопровода – например, для канализационных систем есть свой набор формул, как и для остальных видов конструкций.
  2. Табличные расчеты. Подобрать оптимальную величину проходимости можно при помощи таблицы с примерными значениями, которая чаще всего используется для обустройства разводки в квартире. Значения, указанные в таблице, довольно размыты, но это не мешает использовать их в расчетах. Единственный недостаток табличного метода заключается в том, что в нем рассчитывается пропускная способность трубы в зависимости от диаметра, но не учитываются изменения последнего вследствие отложений, поэтому для магистралей, подверженных возникновению наростов, такой расчет будет не лучшим выбором. Чтобы получить точные результаты, можно воспользоваться таблицей Шевелева, учитывающей практически все факторы, воздействующие на трубы. Такая таблица отлично подходит для монтажа магистралей на отдельных земельных участках.
  3. Расчет при помощи программ. Многие фирмы, специализирующиеся на прокладке трубопроводов, используют в своей деятельности компьютерные программы, позволяющие точно рассчитать не только пропускную способность труб, но и массу других показателей. Для самостоятельных расчетов можно воспользоваться онлайн-калькуляторами, которые, хоть и имеют несколько большую погрешность, доступны в бесплатном режиме. Хорошим вариантом большой условно-бесплатной программы является «TAScope», а на отечественном пространстве самой популярной является «Гидросистема», которая учитывает еще и нюансы монтажа трубопроводов в зависимости от региона.

Расчет пропускной способности газопроводов

Проектирование газопровода требует достаточно высокой точности – газ имеет очень большой коэффициент сжатия, из-за которого возможны утечки даже через микротрещины, не говоря уже о серьезных разрывах. Именно поэтому правильный расчет пропускной способности трубы, по которой будет транспортироваться газ, очень важен.

Если речь идет о транспортировке газа, то пропускная способность трубопроводов в зависимости от диаметра будет рассчитываться по следующей формуле:

Где р – величина рабочего давления в трубопроводе, к которой прибавляется 0,10 МПа;

Ду – величина условного прохода трубы.

Указанная выше формула расчета пропускной способности трубы по диаметру позволяет создать систему, которая будет работать в бытовых условиях.

В промышленном строительстве и при выполнении профессиональных расчетов применяется формула иного вида:

Где z – коэффициент сжатия транспортируемой среды;

Т – температура транспортируемого газа (К).

Эта формула позволяет определить степень разогрева транспортируемого вещества в зависимости от давления. Увеличение температуры приводит к расширению газа, в результате чего давление на стенки трубы повышается (прочитайте: “Почему возникает потеря давления в трубопроводе и как этого можно избежать”).

Чтобы избежать проблем, профессионалам приходится учитывать при расчете трубопровода еще и климатические условия в том регионе, где он будет проходить. Если наружный диаметр трубы окажется меньше, чем давление газа в системе, то трубопровод с очень большой вероятностью будет поврежден в процессе эксплуатации, в результате чего произойдет потеря транспортируемого вещества и повысится риск взрыва на ослабленном отрезке трубы.

При большой необходимости можно определить проходимость газовой трубы с помощью таблицы, в которой описана взаимозависимость между наиболее распространенными диаметрами труб и рабочим уровнем давления в них. По большому счету, у таблиц есть тот же недостаток, который имеет рассчитанная по диаметру пропускная способность трубопровода, а именно – невозможность учесть воздействие внешних факторов.

Расчет пропускной способности канализационных труб

При проектировании канализационной системы нужно в обязательном порядке рассчитывать пропускную способность трубопровода, которая напрямую зависит от его вида (канализационные системы бывают напорными и безнапорными). Для осуществления расчетов используются гидравлические законы. Сами расчеты могут проводиться как при помощи формул, так и посредством соответствующих таблиц.

Для гидравлического расчета канализационной системы требуются следующие показатели:

  • Диаметр труб – Ду;
  • Средняя скорость движения веществ – v;
  • Величина гидравлического уклона – I;
  • Степень наполнения – h/Ду.

Как правило, при проведении расчетов вычисляются только два последних параметра – остальные после этого можно будет определить без особых проблем. Величина гидравлического уклона обычно равна уклону земли, который обеспечит движение стоков со скоростью, необходимой для самоочищения системы.

Скорость и предельный уровень наполнения бытовой канализации определяются по таблице, которую можно выписать так:

  1. 150-250 мм – h/Ду составляет 0,6, а скорость – 0,7 м/с.
  2. Диаметр 300-400 мм – h/Ду составляет 0,7, скорость – 0,8 м/с.
  3. Диаметр 450-500 мм – h/Ду составляет 0,75, скорость – 0,9 м/с.
  4. Диаметр 600-800 мм – h/Ду составляет 0,75, скорость – 1 м/с.
  5. Диаметр 900+ мм – h/Ду составляет 0,8, скорость – 1,15 м/с.

Для изделия с небольшим сечением имеются нормативные показатели минимальной величины уклона трубопровода:

  • При диаметре 150 мм уклон не должен быть менее 0,008 мм;
  • При диаметре 200 мм уклон не должен быть менее 0,007 мм.

Для расчета объема стоков используется следующая формула:

Где а – площадь живого сечения потока;

v – скорость транспортировки стоков.

Определить скорость транспортировки вещества можно по такой формуле:

где R – величина гидравлического радиуса,

С – коэффициент смачивания;

i – степень уклона конструкции.

Из предыдущей формулы можно вывести следующую, которая позволит определить значение гидравлического уклона:

Чтобы вычислить коэффициент смачивания, используется формула такого вида:

Где n – коэффициент, учитывающий степень шероховатости, который варьируется в пределах от 0,012 до 0,015 (зависит от материала изготовления трубы).

Значение R обычно приравнивают к обычному радиусу, но это актуально лишь в том случае, если труба заполняется полностью.

Для других ситуаций используется простая формула:

Где А – площадь сечения потока воды,

Р – длина внутренней части трубы, находящейся в непосредственном контакте с жидкостью.

Табличный расчет канализационных труб

Определять проходимость труб канализационной системы можно и при помощи таблиц, причем расчеты будут напрямую зависеть от типа системы:

  1. Безнапорная канализация. Для расчета безнапорных канализационных систем используются таблицы, содержащие в себе все необходимые показатели. Зная диаметр устанавливаемых труб, можно подобрать в зависимости от него все остальные параметры и подставить их в формулу (прочитайте также: “Как выполняется расчет диаметра трубопровода – теория и практика из опыта”). Кроме того, в таблице указан объем проходящей через трубу жидкости, который всегда совпадает с проходимостью трубопровода. При необходимости можно воспользоваться таблицами Лукиных, в которых указана величина пропускной способности всех труб с диаметром в диапазоне от 50 до 2000 мм.
  2. Напорная канализация. Определять пропускную способность в данном типе системы посредством таблиц несколько проще – достаточно знать предельную степень наполнения трубопровода и среднюю скорость транспортировки жидкости. Читайте также: “Как рассчитать объем трубы – советы из практики”.

Таблица пропускной способности полипропиленовых труб позволяет узнать все необходимые для обустройства системы параметры.

Расчет пропускной способности водопровода

Водопроводные трубы в частном строительстве применяются чаще всего. На систему водоснабжения в любом случае приходится серьезная нагрузка, поэтому расчет пропускной способности трубопровода обязателен, ведь он позволяет создать максимально комфортные условия эксплуатации будущей конструкции.

Для определения проходимости водопроводных труб можно использовать их диаметр (прочитайте также: “Как определить диаметр трубы – варианты замеров окружности”). Конечно, данный показатель не является основой для расчета проходимости, но его влияние нельзя исключать. Увеличение внутреннего диаметра трубы прямо пропорционально ее проходимости – то есть, толстая труба почти не препятствует движению воды и меньше подвержена наслоению различных отложений.

Впрочем, есть и другие показатели, которые также необходимо учитывать. Например, очень важным фактором является коэффициент трения жидкости о внутреннюю часть трубы (для разных материалов имеются собственные значения). Также стоит учитывать длину всего трубопровода и разность давлений в начале системы и на выходе. Немаловажным параметром является и количество различных переходников, присутствующих в конструкции водопровода.

Пропускная способность полипропиленовых труб водопровода может рассчитываться в зависимости от нескольких параметров табличным методом. Одним из них является расчет, в котором главным показателем является температура воды. При повышении температуры в системе происходит расширение жидкости, поэтому трение повышается. Для определения проходимости трубопровода нужно воспользоваться соответствующей таблицей. Также есть таблица, позволяющая определить проходимость в трубах в зависимости от давления воды.

Самый точный расчет воды по пропускной способности трубы позволяют осуществить таблицы Шевелевых. Помимо точности и большого числа стандартных значений, в данных таблицах имеются формулы, позволяющие рассчитать любую систему. Данный материал в полном объеме описывает все ситуации, связанные с гидравлическими расчетами, поэтому большинство профессионалов в данной области чаще всего используют именно таблицы Шевелевых.

Основными параметрами, которые учитываются в этих таблицах, являются:

  • Внешний и внутренний диаметры;
  • Толщина стенок трубопровода;
  • Период эксплуатации системы;
  • Общая протяженность магистрали;
  • Функциональное назначение системы.

Заключение

Расчет пропускной способности труб может выполняться разными способами. Выбор оптимального способа расчета зависит от большого количества факторов – от размеров труб до назначения и типа системы. В каждом случае есть более и менее точные варианты расчета, поэтому найти подходящий сможет как профессионал, специализирующийся на прокладке трубопроводов, так и хозяин, решивший самостоятельно проложить магистраль у себя дома.


Гидравлический расчет газопровода

При проектировании трубопроводов выбор размеров труб осуществляется на основании гидравлического расчета, определяющего внутренний диаметр труб для пропуска необходимого количества газа при допустимых потерях давления или, наоборот, потери давления при транспорте необходимого количества газа по срубам заданного диаметра.

Сопротивление движению газа в трубопроводах слагается из линейных сопротивлений трения и местных сопротивлений: сопротивления трения «работают» на всей протяженности трубопроводов, а местные создаются только в пунктах изменения скоростей и направления движения газа (углы, тройники и т.д.). Подробный гидравлический расчет газопроводов осуществляется по формулам, приведенным в СП 42-101–2003, в которых учтены как режим движения газа, так и коэффициенты гидравлического сопротивления газопроводов. Здесь приводится сокращенный вариант.

Для расчетов внутреннего диаметра газопровода следует воспользоваться формулой:

где dp — расчетный диаметр, см; А, m, m1 — коэффициенты, зависящие от категории сети (по давлению) и материала газопровода; Q — расчетный расход газа, м 3 /ч, при нормальных условиях; ΔРуд — удельные потери давления (Па/м для сетей низкого давления)

Здесь ΔРдоп — допустимые потери давления (Па); L — расстояние до самой удаленной точки, м. Коэффициенты А, m, m1 определяются по приведенной ниже таблице.

Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший — для стальных газопроводов и ближайший меньший — для полиэтиленовых.

Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 1,80 кПа (в том числе в распределительных газопроводах — 1,20 кПа), в газопроводах-вводах и внутренних газопроводах — 0,60 кПа.

Для расчета падения давления необходимо определить такие параметры, как число Рейнольдса, зависящее от характера движения газа, и коэффициент гидравлического трения λ. Число Рейнольдса — безразмерное соотношение, отражающее, в каком режиме движется жидкость или газ: ламинарном или турбулентном.

Переход от ламинарного к турбулентному режиму происходит по достижении так называемого критического числа Рейнольдса Reкp. При Re Reкp — возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения.

Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно.

Число Рейнольдса есть отношение сил инерции, действующих в потоке, к силам вязкости. Также число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине.
Число Рейнольдса применительно к углеводородным газам определяется по следующему соотношению:

где Q — расход газа, м 3 /ч, при нормальных условиях; d — внутренний диаметр газопровода, см; π – число пи; ν — коэффициент кинематической вязкости газа при нормальных условиях, м 2 /с (см. таб. 2.3).
Диаметр газопровода d должен отвечать условию:

Eсли значение числа Рейнольдса превышает 4000 (Re > 4000), возможны следующие ситуации. Для гидравлически гладкой стенки при соотношении 4000 0,25 (5.7)

При значении Re > 100000:

λ = 1/(1,82lgRe – 1,64) 2 (5.8)

Для шероховатых стенок при Re > 4000:

После определения вышеперечисленных параметров падение давления для сетей низкого давления вычисляется по формуле

где Pн — абсолютное давление в начале газопровода, Па; Рк — абсолютное давление в конце газопровода, Па; λ — коэффициент гидравлического трения; l — расчетная длина газопровода постоянного диаметра, м; d — внутренний диаметр газопровода, см; ρ — плотность газа при нормальных условиях, кг/м 3 ; Q — расход газа, м 3 /ч, при нормальных условиях;

Расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке. Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) учитываются путем увеличения фактической длины газопровода на 5–10%.

Для наружных надземных и внутренних газопроводов расчетная длина газопроводов определяется по формуле:

где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода; d — внутренний диаметр газопровода, см; λ — коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода.

Местные гидравлические сопротивления в газопроводах и вызываемые ими потери давления возникают при изменении направления движения газа, а также в местах разделения и слияния потоков. Источники местных сопротивлений — переходы с одного размера газопровода на другой, колена, отводы, тройники, крестовины, компенсаторы, запорная, регулирующая и предохранительная арматура, конденсатосборники, гидравлические затворы и другие устройства, приводящие к сжатию, расширению и изгибу потоков газа. Падение давления в местных сопротивлениях, перечисленных выше, допускается учитывать путем увеличения расчетной длины газопровода на 5–10%. Расчетная длина наружных надземных и внутренних газопроводов

где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода длиной l1, lэ — условная эквивалентная длина прямолинейного участка газопровода, м, потери давления на котором равны потерям давления в местном сопротивлении со значением коэффициента ξ = 1.

Эквивалентная длина газопровода в зависимости от режима движения газа в газопроводе:
— для ламинарного режима движения

— для критического режима движения газа

lэ = 12,15d 1,333 v 0,333 /Q 0,333 (5.14)

— для всей области турбулентного режима движения газа

При расчете внутренних газопроводов низкого давления для жилых домов допустимые потери давления газа на местные сопротивления, % от линейных потерь:
– на газопроводах от вводов в здание до стояка — 25;
– на стояках — 20;
– на внутриквартирной разводке — 450 (при длине разводки 1–2 м), 300 (3–4 м), 120 (5–7 м) и 50 (8–12 м),

Приближенные значения коэффициента ξ для наиболее распространенных видов местных сопротивлений приведены в табл. 5.2.
Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле:

H = 50λV 2 ρ/d (5.12)

где λ — коэффициент гидравлического трения (определяется по формуле 5.7); V — средняя скорость движения сжиженных газов, м/с.

С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются:
– во всасывающих трубопроводах — не более 1,2 м/с;
– в напорных трубопроводах — не более 3 м/с.

При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле

где g — ускорение свободного падения, 9,81 м/с 2 ; h — разность абсолютных отметок начальных и конечных участков газопровода, м; ρа — плотность воздуха, кг/м 3 , при температуре 0°С и давлении 0,10132 МПа; ρ — плотность газа при нормальных условиях кг/м 3 .

При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

Таблица 5.2. Коэффициенты местных сопротивлений ξ при турбулентном движении газа (Re > 3500)

Вид местного сопротивленияЗначениеВид местного сопротивленияЗначение
Отводы:Сборники конденсата0,5–2,0
гнутые плавные0,20–0,15Гидравлические затворы1,5–3,0
сварные сегментные0,25–0,20Внезапное расширение трубопроводов0,60–0,25
Кран пробочный3,0–2,0Внезапное сужение трубопроводов0,4
Задвижки:Плавное расширение трубопроводов (диффузоры)0,25–0,80
параллельная0,25–0,50Плавное сужение трубопроводов (конфузоры)0,25–0,30
с симметричным сужением стенки1,30–1,50Тройники
Компенсаторы:потоков слияния1,7
волнистые1,7–2,3разделения потоков1,0
лирообразные1,7–2,4
П-образные2,1–2,7



Поделиться с друзьями:

410056, г. Саратов, ул.
Белоглинская, 84/86

E-mail: exform@exform.ru
market@exform.ru

© 1991-2018 ПКФ Экс-Форма. Производство промышленное газовое оборудование.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.
Представленная на сайте информация не является публичной офертой.

Ссылка на основную публикацию