Расчет гидравлических потерь по СП 42-101-2003, Exel
Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами
Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.
Перед началом гидравлических расчётов выполняют:
- Сбор и обработку информации по объекту с целью:
- определения количества требуемого тепла;
- выбора схемы отопления.
- Тепловой расчёт системы отопления с обоснованием:
- объёмов тепловой энергии;
- нагрузок;
- теплопотерь.
Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.
Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.
Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.
Определение количества газорегуляторных пунктов ГРП
Газорегуляторные пункты предназначены для снижения давления газа и поддержания его на заданном уровне независимо от расхода.
При известном расчетном расходе газообразного топлива районом города определяется количество ГРП, исходя из оптимальной производительности ГРП (V=1500-2000 м3/час) по формуле:
где n — количество ГРП, шт.;
Vр — расчетный расход газа районом города, м3/час;
Vопт — оптимальная производительность ГРП, м3/час;
После определения количества ГРП намечают их месторасположение на генплане района города, устанавливая их в центре газифицируемой площади на территории кварталов.
Обзор программ
Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.
Самой популярной является Excel.
Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.
Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.
- HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
- DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
- «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.
Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.
Что такое гидравлический расчёт
Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:
- диаметр и пропускную способность труб;
- местные потери давления на участках;
- требования гидравлической увязки;
- общесистемные потери давления;
- оптимальный расход воды.
Согласно полученным данным осуществляют подбор насосов .
Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор ).
Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).
Комплексные задачи — минимизация расходов :
- капитальных – монтаж труб оптимального диаметра и качества;
- эксплуатационных:
- зависимость энергозатрат от гидравлического сопротивления системы;
- стабильность и надёжность;
- бесшумность.
Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений
Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:
- по удельным потерям (стандартный расчёт диаметра труб);
- по длинам, приведённым к одному эквиваленту;
- по характеристикам проводимости и сопротивления;
- сопоставление динамических давлений.
Два первых метода используются при неизменном перепаде температуры в сети.
Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.
Обзор программ для гидравлических вычислений
Пример программы для расчета отопления
По сути любой гидравлический расчет систем водяного теплоснабжения является сложной инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые упрощают выполнение этой процедуры.
Можно попытаться сделать гидравлический расчет системы отопления в оболочке Excel, воспользовавшись уже готовыми формулами. Но при этом возможно возникновение следующих проблем:
- Большая погрешность. В большинстве случаев в качестве примера гидравлического расчета отопительной системы берутся однотрубная или двухтрубная схемы. Найти подобные вычисления для коллекторной проблематично;
- Для правильного учета гидравлического сопротивления трубопровода необходимы справочные данные, которые отсутствуют в форме. Их нужно искать и вводить дополнительно.
Учитывая эти факторы, специалисты рекомендуют использовать программы для расчета. Большинство из них платные, но некоторые имеют демоверсию с ограниченными возможностями.
Oventrop CO
Программа для гидравлического расчета
Самая простая и понятная программа для гидравлического расчета системы теплоснабжения. Интуитивный интерфейс и гибкая настройка помогут быстро разобраться с нюансами ввода данных. Небольшие проблемы могут возникнуть при первичной настройке комплекса. Необходимо будет ввести все параметры системы, начиная от материала изготовления труб и заканчивая расположением нагревательных элементов.
Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.
Instal-Therm HCR
Программный комплекс рассчитан для профессионального гидравлического сопротивления системы теплоснабжения. Бесплатная версия имеет множество ограничений. Область применения – проектирование отопления в больших общественных и производственных зданиях.
На практике для автономного теплоснабжения частных домов и квартир гидравлический расчет выполняется не всегда. Однако это может привести к ухудшению работы системы отопления и быстрому выходу из строя его элементов – радиаторов, труб и котла. Что избежать этого нужно своевременно рассчитать параметры системы и сравнить их с фактическими для дальнейшей оптимизации работы отопления.
Пример гидравлического расчета системы отопления:
Проверочный гидравлический расчет газопровода-отвода
Цель расчета: Проверка давления на входе в газораспределительную станцию.
Пропускная способность, qсут, млн. м3/сут.
Начальное давление участка газопровода, Рн , МПа
Конечное давление участка газопровода, Рк , МПа
Длина участка газопровода, L, км
Диаметр участка газопровода, dн х ,мм
Среднегодовая температура грунта на глубине залегания газопровода, tгр, 0С
Температура газа в начале участка газопровода, tн , 0С
Коэффициент теплопередачи от газа к грунту, k, Вт /(м20С)
Теплоемкость газа, ср, ккал/(кг°С)
Таблица 1 — Состав и основные параметры компонентов газа Оренбургского месторождения
Гидравлический расчет газопроводов(методика СП 42-101-2003)
На портале можно провести онлайн гидравлический расчет газопроводов в теме «ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ (ГАЗОПРОВОДОВ)».
На данной странице изложена методика на основании которой составлен расчет.
Пример гидравлического расчета:
РАСЧЕТ ДИАМЕТРА ГАЗОПРОВОДА И ДОПУСТИМЫХ ПОТЕРЬ ДАВЛЕНИЯ
3.21 Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуатации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.
3.22 Расчетные внутренние диаметры газопроводов определяются исходя из условия обеспечения бесперебойного газоснабжения всех потребителей в часы максимального потребления газа.
3.23 Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оптимальным распределением расчетной потери давления между участками сети.
При невозможности или нецелесообразности выполнения расчета на компьютере (отсутствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведенным ниже формулам или по номограммам (приложение Б), составленным по этим формулам.
3.24 Расчетные потери давления в газопроводах высокого и среднего давления принимаются в пределах категории давления, принятой для газопровода.
3.25 Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 180 даПа, в том числе в распределительных газопроводах 200 даПа, в газопроводах-вводах и внутренних газопроводах — 60 даПа.
3.26 Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяйственных и бытовых предприятий и организаций коммунально-бытового обслуживания принимаются в зависимости от давления газа в месте подключения с учетом технических характеристик принимаемого к установке газового оборудования, устройств автоматики безопасности и автоматики регулирования технологического режима тепловых агрегатов.
3.27 Падение давления на участке газовой сети можно определять:
— для сетей среднего и высокого давлений по формуле
где Рн — абсолютное давление в начале газопровода, МПа;
Рк — абсолютное давление в конце газопровода, МПа;
l — коэффициент гидравлического трения;
l — расчетная длина газопровода постоянного диаметра, м;
d — внутренний диаметр газопровода, см;
r — плотность газа при нормальных условиях, кг/м 3 ;
Q — расход газа, м 3 /ч, при нормальных условиях;
— для сетей низкого давления по формуле
где Рн — давление в начале газопровода, Па;
Рк — давление в конце газопровода, Па;
Примечание сайта: Выбор диаметров газопровода на стадии гидравлического расчета происходит по сортаменту выбранной трубы или из типового ряда условных диаметров. Данные из сортамента труб можно получить онлайн на сайте в программе «СОРТАМЕНТ ТРУБ КРУГЛОГО СЕЧЕНИЯ (СТАЛЬНЫХ, ПОЛИЭТИЛЕНОВЫХ И Т.Д.). КАЛЬКУЛЯТОР ТРУБ ОНЛАЙН».
3.28 Коэффициент гидравлического трения l определяется в зависимости от режима движения газа по газопроводу, характеризуемого числом Рейнольдса,
где v — коэффициент кинематической вязкости газа, м 2 /с, при нормальных условиях;
Q, d — обозначения те же, что и в формуле (3), и гидравлической гладкости внутренней стенки газопровода, определяемой по условию (6),
где Re — число Рейнольдса;
(Примечание :в формуле №6 допущена опечатка. Вместо знака равно должен быть знак умножения)
n — эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных — 0,01 см, для бывших в эксплуатации стальных — 0,1 см, для полиэтиленовых независимо от времени эксплуатации — 0,0007 см;
d — обозначение то же, что и в формуле (3).
В зависимости от значения Re коэффициент гидравлического трения l определяется:
— для ламинарного режима движения газа Re
— для критического режима движения газа Re = 2000-4000
— при Re > 4000 — в зависимости от выполнения условия (6);
— для гидравлически гладкой стенки (неравенство (6) справедливо):
— при 4000
— при Re > 100 000
— для шероховатых стенок (неравенство (6) несправедливо) при Re > 4000
где n — обозначение то же, что и в формуле (6);
d — обозначение то же, что и в формуле (3).
3.29 Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке.
3.30 Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5—10 %.
3.31 Для наружных надземных и внутренних газопроводов расчетную длину газопроводов определяют по формуле (12)
где l1 — действительная длина газопровода, м;
— сумма коэффициентов местных сопротивлений участка газопровода;
d — обозначение то же, что и в формуле (3);
l — коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода по формулам (7)—(11).
3.32 В тех случаях когда газоснабжение СУГ является временным (с последующим переводом на снабжение природным газом), газопроводы проектируются из условий возможности их использования в будущем на природном газе.
При этом количество газа определяется как эквивалентное (по теплоте сгорания) расчетному расходу СУГ.
3.33 Падение давления в трубопроводах жидкой фазы СУГ определяется по формуле (13)
где l — коэффициент гидравлического трения;
V — средняя скорость движения сжиженных газов, м/с.
С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются: во всасывающих трубопроводах — не более 1,2 м/с; в напорных трубопроводах — не более 3 м/с.
Коэффициент гидравлического трения l определяется по формуле (11).
3.34 Расчет диаметра газопровода паровой фазы СУГ выполняется в соответствии с указаниями по расчету газопроводов природного газа соответствующего давления.
3.35 При расчете внутренних газопроводов низкого давления для жилых домов допускается определять потери давления газа на местные сопротивления в размере, %:
— на газопроводах от вводов в здание:
до стояка — 25 линейных потерь
— на внутриквартирной разводке:
при длине разводки 1—2 м — 450 линейных потерь
3.36 При расчете газопроводов низкого давления учитывается гидростатический напор Hg, даПа, определяемый по формуле (14)
где g — ускорение свободного падения, 9,81 м/с 2 ;
h — разность абсолютных отметок начальных и конечных участков газопровода, м;
rа — плотность воздуха, кг/м 3 , при температуре 0 °С и давлении 0,10132 МПа;
r — обозначение то же, что в формуле (3).
3.37 Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка потерь давления в кольце допускается до 10 %.
3.38 При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.
3.39 При выполнении гидравлического расчета газопроводов, проведенного по формулам (5)—(14), а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, расчетный внутренний диаметр газопровода следует предварительно определять по формуле (15)
где dp — расчетный диаметр, см;
А, В, m, m1 — коэффициенты, определяемые по таблицам 6 и 7 в зависимости от категории сети (по давлению) и материала газопровода;
Q — расчетный расход газа, м 3 /ч, при нормальных условиях;
DРуд — удельные потери давления (Па/м — для сетей низкого давления, МПа/м — для сетей среднего и высокого давления), определяемые по формуле (16)
DРдоп — допустимые потери давления (Па — для сетей низкого давления, МПа/м — для сетей среднего и высокого давления);
L — расстояние до самой удаленной точки, м.
Категория сети | А |
Сети низкого давления | 10 6 / (162 p 2 ) = 626 |
Сети среднего и высокого давления | P = 0,101325 МПа, Pm — усредненное давление газа (абсолютное) в сети, МПа. |
Материал | В | m | m1 |
Сталь | 0,022 | 2 | 5 |
Полиэтилен | , v — кинематическая вязкость газа при нормальных условиях, м 2 /с. | 1,75 | 4,75 |
3.40 Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший — для стальных газопроводов и ближайший меньший — для полиэтиленовых.
Самостоятельный гидравлический расчет трубопровода
Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Основные положения гидравлического расчета
Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.
Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:
Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:
- ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.
Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.
Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.
Подбор оптимального диаметра трубопровода
Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.
Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:
При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).
Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:
Расчет падения напора и гидравлического сопротивления
Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.
Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.
Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.
Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.
Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:
В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:
Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:
Расчет потерь давления
Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.
Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:
Примеры задач гидравлического расчета трубопровода с решениями
Задача 1
В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.
Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.
Исходные данные:
Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;
эффективный диаметр d = 24 мм;
длина трубы l = 32 м;
коэффициент трения λ = 0,028;
давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;
общий напор Н = 20 м.
Решение задачи:
Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:
w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с
Потери напора жидкости в трубопроводе на трение определяются по уравнению:
HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м
Общие потери напора носителя рассчитываются по уравнению и составляют:
Потери напора на местные сопротивления определяется как разность:
Ответ: потери напора воды на местные сопротивления составляют 7,45 м.
Задача 2
По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.
Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10 -5 .
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
Полученное значение потери напора носителя на трение составят:
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000
Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
Ответ:требуемая длина трубопровода составит 213,235 м.
Задача 3
В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал – сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.
Исходные данные:
Расход Q = 18 м 3 /час = 0,005 м 3 /с;
длина трубопровода l=26 м;
для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);
шероховатость стальной трубыε = 50 мкм;
коэффициент трения λ = 0,026;
Решение задачи:
Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:
∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5
d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6
d = 5 √1,16·10 -6 = 0,065 м.
Ответ: оптимальный диаметр трубопровода составляет 0,065 м.
Задача 4
Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.
Определите эффективный диаметр труб d, подходящих под условия данной задачи.
Исходные данные:
Решение задачи:
Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:
Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.
Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:
d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м
d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м
Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.
Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:
d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м
d2max = √(4·34)/(3600·3,14·3) = 0,063 м
Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.
Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.
Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.
Задача 5
В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.
диаметр трубы d = 0,25 м;
расход Q = 100 м 3 /час;
μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);
ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).
Решение задачи:
Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:
W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c
Значение числа Рейнольдса определим по формуле:
Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422
Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.
Ответ: режим потока воды – турбулентный.
Гидравлический расчет газопровода: методы вычислений + пример расчета
Проектирование газоснабжения » Проектирование газоснабжения » Газоснабжение » Гидравлический расчет газопроводов онлайн (Обсуждение гидравлического расчета.) |
Гидравлический расчет газопроводов онлайн
Farn | Дата: Среда, 08.05.2019, 16:02 | Сообщение # 1 | |
Разработал гидравлический расчет газопроводов (тупиковых систем) онлайн на основании методики СП “42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб”. Расчет позволяет: Хотелось бы получить комментарии, отзывы, замечания и пожелания. К теме приложен пример расчета. | ||
|
gaspar | Дата: Пятница, 10.05.2019, 11:37 | Сообщение # 2 | |||||||||||||||||||||||||||||||||||||||||||||||
![]() | Цитата FarnРасчет доступен Всем желающим без ограничения по ссылке https://gidrotgv.ru/gidravl. up: Посмотрел расчёты. Сравнил со своей программкой, которую в свое время сверял с результатами сертифицированной программы АСПО-ГАЗ, купленной коллегами (результаты были практически идентичны) По сути: Теперь о минусах. Их не много 2. Основной – отсутствие возможности выбора типоразмеров стальных труб имеющихся в торговой сети . Потому точность расчёта теряется. Например диаметр Dвн65. Соответствующий ему диаметр 76 в товарной сети металлопроката в основном имеет толщины стенок 3, 3,5, 4 мм (внутренний 72, 70, 68). Соответственно можно видеть существенные различия в результатах расчёта. Но в целом этот минус может быть и одновременно плюсом – результаты расчёта будут иметь определённый запас. 3. Ещё небольшой минус – коэффициент учитывающий местные сопротивления (1,1 – 10 % задаётся для всего расчёта. А для длинномерных ПЭ труб, по моему мнению, вполне можно брать минимальный (1,05- 5 %. При “солянке” разнотипных по материалу и способу сварке труб это не совсем удобно. 4. По оформлению: опечатка в слове адреСС , газопровод низкого и среднего давления не имеет категорий по давлению согласно “газового ” регламента, только газопроводы высокого давления. В результатах хотелось бы аннотацию, по какому документу выполнен расчёт. 5. Я бы выделил программу расчета низкого давления в отдельную онлайн-страницу. – с операциями вычислений по давлению величин в кПа. Легче воспринимается глазу меньшее количество цифр. 6. Я бы не рассматривал для новых труб шероховатость 0,01 . Всё таки изучив немало материалов, брать этот критерий в расчёте подземных сетей не совсем правильно, ибо после хранения, транспортирвки труб такой шероховатости уже не будет. Тем более гидравлика должна учитывать и последующие сроки эксплуатации. Я например беру для надземных сетей 0,02 Что хотелось бы видеть еще. Программу он-лайн расчёта внутренних сетей газоснабжения. И будет огромный её плюс, если появится возможность ввода на участках потерь давления в счетчиках газа, термозапорных и электромагнитных клапанах (пример в 0273441.jpg (169.5 Kb) ) . Ибо методика, изложенная в СП 42-101-2003 не учитывает эти потери. Гидравлический расчет газопроводаПри проектировании трубопроводов выбор размеров труб осуществляется на основании гидравлического расчета, определяющего внутренний диаметр труб для пропуска необходимого количества газа при допустимых потерях давления или, наоборот, потери давления при транспорте необходимого количества газа по срубам заданного диаметра. Сопротивление движению газа в трубопроводах слагается из линейных сопротивлений трения и местных сопротивлений: сопротивления трения «работают» на всей протяженности трубопроводов, а местные создаются только в пунктах изменения скоростей и направления движения газа (углы, тройники и т.д.). Подробный гидравлический расчет газопроводов осуществляется по формулам, приведенным в СП 42-101–2003, в которых учтены как режим движения газа, так и коэффициенты гидравлического сопротивления газопроводов. Здесь приводится сокращенный вариант. Для расчетов внутреннего диаметра газопровода следует воспользоваться формулой: где dp — расчетный диаметр, см; А, m, m1 — коэффициенты, зависящие от категории сети (по давлению) и материала газопровода; Q — расчетный расход газа, м 3 /ч, при нормальных условиях; ΔРуд — удельные потери давления (Па/м для сетей низкого давления) Здесь ΔРдоп — допустимые потери давления (Па); L — расстояние до самой удаленной точки, м. Коэффициенты А, m, m1 определяются по приведенной ниже таблице. Внутренний диаметр газопровода принимается из стандартного ряда внутренних диаметров трубопроводов: ближайший больший — для стальных газопроводов и ближайший меньший — для полиэтиленовых. Расчетные суммарные потери давления газа в газопроводах низкого давления (от источника газоснабжения до наиболее удаленного прибора) принимаются не более 1,80 кПа (в том числе в распределительных газопроводах — 1,20 кПа), в газопроводах-вводах и внутренних газопроводах — 0,60 кПа. Для расчета падения давления необходимо определить такие параметры, как число Рейнольдса, зависящее от характера движения газа, и коэффициент гидравлического трения λ. Число Рейнольдса — безразмерное соотношение, отражающее, в каком режиме движется жидкость или газ: ламинарном или турбулентном. Переход от ламинарного к турбулентному режиму происходит по достижении так называемого критического числа Рейнольдса Reкp. При Re Reкp — возможно возникновение турбулентности. Критическое значение числа Рейнольдса зависит от конкретного вида течения. Число Рейнольдса как критерий перехода от ламинарного к турбулентному режиму течения и обратно относительно хорошо действует для напорных потоков. При переходе к безнапорным потокам переходная зона между ламинарным и турбулентным режимами возрастает, и использование числа Рейнольдса как критерия не всегда правомерно. Число Рейнольдса есть отношение сил инерции, действующих в потоке, к силам вязкости. Также число Рейнольдса можно рассматривать как отношение кинетической энергии жидкости к потерям энергии на характерной длине. где Q — расход газа, м 3 /ч, при нормальных условиях; d — внутренний диаметр газопровода, см; π – число пи; ν — коэффициент кинематической вязкости газа при нормальных условиях, м 2 /с (см. таб. 2.3). Eсли значение числа Рейнольдса превышает 4000 (Re > 4000), возможны следующие ситуации. Для гидравлически гладкой стенки при соотношении 4000 0,25 (5.7) При значении Re > 100000: λ = 1/(1,82lgRe – 1,64) 2 (5.8) Для шероховатых стенок при Re > 4000: После определения вышеперечисленных параметров падение давления для сетей низкого давления вычисляется по формуле где Pн — абсолютное давление в начале газопровода, Па; Рк — абсолютное давление в конце газопровода, Па; λ — коэффициент гидравлического трения; l — расчетная длина газопровода постоянного диаметра, м; d — внутренний диаметр газопровода, см; ρ — плотность газа при нормальных условиях, кг/м 3 ; Q — расход газа, м 3 /ч, при нормальных условиях; Расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзитного и 0,5 путевого расходов газа на данном участке. Падение давления в местных сопротивлениях (колена, тройники, запорная арматура и др.) учитываются путем увеличения фактической длины газопровода на 5–10%. Для наружных надземных и внутренних газопроводов расчетная длина газопроводов определяется по формуле: где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода; d — внутренний диаметр газопровода, см; λ — коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода. Местные гидравлические сопротивления в газопроводах и вызываемые ими потери давления возникают при изменении направления движения газа, а также в местах разделения и слияния потоков. Источники местных сопротивлений — переходы с одного размера газопровода на другой, колена, отводы, тройники, крестовины, компенсаторы, запорная, регулирующая и предохранительная арматура, конденсатосборники, гидравлические затворы и другие устройства, приводящие к сжатию, расширению и изгибу потоков газа. Падение давления в местных сопротивлениях, перечисленных выше, допускается учитывать путем увеличения расчетной длины газопровода на 5–10%. Расчетная длина наружных надземных и внутренних газопроводов где l1 — действительная длина газопровода, м; Σξ — сумма коэффициентов местных сопротивлений участка газопровода длиной l1, lэ — условная эквивалентная длина прямолинейного участка газопровода, м, потери давления на котором равны потерям давления в местном сопротивлении со значением коэффициента ξ = 1. Эквивалентная длина газопровода в зависимости от режима движения газа в газопроводе: — для критического режима движения газа lэ = 12,15d 1,333 v 0,333 /Q 0,333 (5.14) — для всей области турбулентного режима движения газа При расчете внутренних газопроводов низкого давления для жилых домов допустимые потери давления газа на местные сопротивления, % от линейных потерь: Приближенные значения коэффициента ξ для наиболее распространенных видов местных сопротивлений приведены в табл. 5.2. H = 50λV 2 ρ/d (5.12) где λ — коэффициент гидравлического трения (определяется по формуле 5.7); V — средняя скорость движения сжиженных газов, м/с. С учетом противокавитационного запаса средние скорости движения жидкой фазы принимаются: При расчете газопроводов низкого давления учитывается гидростатический напор Нg, даПа, определяемый по формуле где g — ускорение свободного падения, 9,81 м/с 2 ; h — разность абсолютных отметок начальных и конечных участков газопровода, м; ρа — плотность воздуха, кг/м 3 , при температуре 0°С и давлении 0,10132 МПа; ρ — плотность газа при нормальных условиях кг/м 3 . При выполнении гидравлического расчета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления. Таблица 5.2. Коэффициенты местных сопротивлений ξ при турбулентном движении газа (Re > 3500)
410056, г. Саратов, ул. | E-mail: exform@exform.ru © 1991-2018 ПКФ Экс-Форма. Производство промышленное газовое оборудование. Гидравлический расчет газопроводаТеоретические аспекты расчетов газопроводаОсновная задача гидравлических расчетов заключается в том, чтобы определить диаметры газопроводов. С точки зрения методов гидравлические расчеты газопроводов можно разделить на следующие типы: – расчет кольцевых сетей высокого и среднего давления; – расчет тупиковых сетей высокого и среднего давления; – расчет многокольцевых сетей низкого давления; – расчет тупиковых сетей низкого давления. Для проведения гидравлических расчётов необходимо иметь следующие исходные данные: – расчетную схему газопровода с указанием на ней номеров и длин участков; – часовые расходы газа у всех потребителей, подключенных к данной сети; – допустимые перепады давления газа в сети. Расчетная схема газопровода составляется в упрощенном виде по плану газифицируемого района. Все участки газопроводов как бы выпрямляются и указываются их полные длины со всеми изгибами и поворотами. Точки расположения потребителей газа на плане определяются местами расположения соответствующих ГРП или ГРУ. Гидравлический режим работы газопроводов высокого и среднего давления назначается из условий максимального газопотребления. Расчёт подобных сетей состоит из трёх этапов: – расчет в аварийных режимах; – расчет при нормальном потокораспределении; Методы расчетаГидравлические расчеты газопроводов выполняются на основании общих уравнений газовой динамики, устанавливающих связь между диаметром, расходом газа и перепадом давления для трубопроводов известной длины и конструкции. Из этих уравнений можно определить любой параметр по заданным значениям двух остальных. Использование общих уравнений газовой динамики для гидравлического расчета городских газопроводов производится с учетом эксплуатационных и экономических факторов, отражающих специфику систем распределения газа. Эксплуатационные требования выражаются ограничением диапазона колебаний давления газа у потребителей. Таким образом, обеспечивается нормальная работа бытовых газовых приборов и горелок агрегатов коммунально-бытовых и промышленных предприятий в пределах допускаемых отклонений от номинальной тепловой нагрузки. Выполнение эксплуатационных требований осуществляется путем ограничения величины перепада давления между газорегуляторным пунктом и потребителем – за счет оптимального распределения её по отдельным участкам газопровода. Борисов С.Н., Даточный В.В. Гидравлические расчеты газопроводов. // М: Недра,1972. – с. 3. Основными вопросами проведения гидравлических расчетов трубопроводов является определение коэффициента гидравлического трения, который входит в исходное уравнение движения газа и определяет гидравлическую характеристику труб. Ламинарного режима течения этот коэффициент, как показывают все имеющиеся исследования, достаточно точно может быть определен по известной формуле Хагена-Пуазейля Уравнение или закон Пуазёйля (закон Хагена – Пуазёйля или закон Гагена – Пуазёйля) – закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения. Сформулирован впервые Готтхильфом Хагеном (нем. Gotthilf Hagen, иногда Гаген) в 1839 году и вскоре повторно выведен Ж. Л. Пуазёйлем (фр. J. L. Poiseuille) в 1840 году. Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы. Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.. Явления, происходящие в турбулентном потоке, из-за своей сложности длительное время не поддавались теоретическому анализу. Поэтому для вычисления коэффициента гидравлического трения были предложены эмпирические формулы, которые в большинстве своем не учитывали физических свойств транспортируемой среды и характер внутренней поверхности труб. Более поздние формулы представляли математическое выражение опытных кривых, построенных в безразмерных координатах, без проникновения в механизм турбулентного движения Физическая модель механизма турбулентного движения была предложена Л. Прандтлем в 1925 г. в следующем виде. В турбулентном течении возникают жидкие комки, т. е. элементарные конечные объемы жидкости, или, как их называют, моли, каждый из которых на протяжении некоторого расстояния, называемого длиной пути смешения, движется в виде единого целого с собственной скоростью, сохраняя количество движения, а пройдя это расстояние, смешивается с окружающей’ жидкостью / Хзмалян Д.М. Теория горения и топочные устройства, 1976, с.93.. В результате теоретических и экспериментальных исследований XX в. получены формулы для определения коэффициента сопротивления трения л при турбулентном режиме движения для труб с равномерно-зернистой и нерегулярной шероховатостью внутренней поверхности. Благодаря этому появилась возможность практического использования уравнений движения газа и повысилась степень точности расчетов. Питание природным газом всех потребителей газифицированного города или населенного пункта осуществляется через специальную систему распределения газа, состоящую из гидравлически связанных между собой газопроводов разных диаметров и газорегуляторных пунктов и установок. Газорегуляторные пункты и установки оборудуют регуляторами, поддерживающими постоянное давление газа, и запорно-предохранительными устройствами, предотвращающими повышение давления сверх допустимого предела. Борисов С.Н., Даточный В.В. Гидравлические расчеты газопроводов. // М: Недра,1972. – с. 3 Строительными нормами и правилами СП 42-101-2003 / Свод правил Общие положения по проектированию строительству газораспределительных систем из металлических и полиэтиленовых труб / М.: ЗАО «Полимергаз», 2003. для городских систем газоснабжения установлены следующие категории давления газа: – низкого – не более 0,05 кгс/см2; – среднего – от 0,05 до 3 кгс/см2; – высокого – от 3 до 12 кгс/см2. Жилые и общественные здания, мелкие промышленные потребители, детские и лечебные учреждения, предприятия общественного питания и бытового обслуживания, размещенные в жилых и общественных зданиях, подключают к распределительным газопроводам низкого давления. Отопительные и производственные котельные, коммунальные предприятия, расположенные в отдельностоящих зданиях, можно подключать к газопроводам среднего или высокого (до 6 кгс/см2) давления через местные газорегуляторные пункты или установки. Промышленные предприятии обычно питают газом высокого давления. Стаскевич Н.Л., Северинец Г.Н., Вигдорчик Д.Я. Справочник по газоснабжению использованию газа. // Л.:Недра, 1990.-с.84, номограммы – с. 106. Распределение подключений рассредоточенных потребителей с расходом газа от 50 до 700 м3/ч к городским сетям низкого давления, среднего или высокого давления осуществляется на основании сравнения затрат по разным вариантам с учетом их технологический и эксплуатационных особенностей. Сосредоточенных потребителей с нагрузкой более 700 м3/ч рекомендуется подключать к сетям среднего или высокого давления. К газопроводам давлением 6-12 кгс/см2 присоединяются и городские газорегуляторные пункты и промышленные предприятия, нуждающиеся в газе высоких давлений (газотурбинные установки, мартеновские цехи при оборудовании печей горелками высокого давления) для осуществления технологических процессов. Там же, с. 5-6 Распределительные газопроводы бывают тупиковые и кольцевые. Кольцевание газопроводов повышает надежность систем распределения. Обычно распределительные газопроводы низкого давления представляют собой замкнутую многокольцевую сеть, охватывающую всю территорию района, снабжаемого газом. Трассировка газопроводов всех давлений выполняется с учетом установленных норм разрывов от зданий и сооружений. Потребление газа в городах отличается значительной неравномерностью. В этих условиях газопроводы систем распределения должны быть рассчитаны на максимальный часовой расход, определенный по совмещенному суточному графику разбора газа всеми подключенными объектами. Построение совмещенных суточных графиков во многих случаях затрудняется неопределенным характером нагрузок потребителей и отсутствием установленных закономерностей их колебаний по величине и во времени. Поэтому практически газопроводы проектируются на расчетные часовые расходы, определяемые двумя методами. По первому методу неравномерность потребления выражается коэффициентом часового максимум, в по второму – коэффициент одновременности. Там же, с. 5-6 |