Устройство и принцип работы кинетического ветрогенератора

Принцип работы ветрогенератора

Поиск альтернативных способов получения энергии ведется уже немало лет. Одной из разновидностей такого оборудования являются ветрогенераторы, которые способны вырабатывать электроэнергию благодаря ветру. Принцип работы ветрогенератора основывается на возможности энергии переходить из одного вида в другой.

Данное оборудование функционирует следующим образом: ветер обладает кинетической энергией, которая способна превращаться в механическую энергию ротора. Далее устройство превращает механическую энергию в электрическую. Таким образом можно получать электроэнергию бесплатно. Мощность ветряных электростанций может варьироваться в пределах 5-4500 кВт. Сегодня разработано оборудование, которое способно вырабатывать электроэнергию даже при очень слабой ветровой скорости 4 м/с.

Принцип работы ветряка достаточно прост, поэтому такое оборудование можно изготовить самостоятельно. Использование данного оборудования предоставит возможность не только экономить на оплате электроэнергии, но и продавать ее на условиях «зеленого тарифа» государству. Данный способ получения энергии подходит для любых объектов, находящихся в местности без централизованного энергоснабжения либо может быть использован в качестве дополнительного источника. Он является оптимальным выбором и позволяет электрифицировать автономно любой объект.

Особенности устройства ветрогенератора

Данное оборудование имеет лопасти, которые приводятся в движение вследствие воздействия силы ветра. Данное вращение запускает турбину, которая также начинает вращаться. В турбине начинает генерироваться энергия, мощность которой определяется силой ветра. С ростом ветровой энергии увеличивается и механическая, вырабатываемая турбиной.

Устройство ветрогенератора может отличаться наличием или отсутствием мультипликатора на роторе. Если он предусмотрен, энергия от турбины передается ему. Назначением мультипликатора является ускорение вращения оси. Установки без этого оборудования являются более эффективными, поскольку в них не происходит генерации дополнительной энергии (для ускорения вращения оси), а значит, и ее растраты. Такому оборудованию вполне достаточно ветровой энергии для полноценного функционирования.

Принцип работы ветряной электростанции позволил получать электроэнергию альтернативным способом и обеспечить автономность каждого объекта. Мощность данного оборудования полностью определяется размерами его лопастей. Чем больше их площадь, тем выше мощность можно получить, используя принцип работы ветроустановки.

Расчет мощности ветряного оборудования производится на основе кубической зависимости скорости ветряного потока. Кубическая зависимость означает, что если ветровой поток скорости, условно 6 м/сек, обеспечивает мощность установки 100 Вт, то увеличение потока до 12 м/сек приведет к возрастанию мощности в восемь раз – до 800 Вт.

Если турбина характеризуется небольшими размерами, для получения высокой мощности будет необходим очень сильный ветер. Если же турбина большая, она способна и при незначительной ветровой скорости выдавать необходимую мощность.

Конструкция ветряка полностью определяет его способности вырабатывать определенное количество электроэнергии за единицу времени в зависимости от скорости ветрового потока.

Конструкция ветряных генераторов энергии

Многим интересно, как устроен ветрогенератор именно с точки зрения его конструкции, поэтому мы уделим отдельное внимание этому вопросу. Такие установки включают следующие функциональные узлы:

  • установка, превращающая ветровую силу в энергию;
  • аккумуляторная батарея;
  • инвертор;
  • контроллер заряда.

Оборудование, преобразующее ветровую энергию в электрическую, включает в себя:

  • турбину, т.е. ротор, осуществляющий превращение энергии ветрового потока прямолинейного движения;
  • генератор, осуществляющий преобразование механической энергии в электрическую;
  • мачту (данный конструктивный элемент может быть типа «ферма» либо трубчатым);
  • систему управления турбиной;
  • мультипликатор (в зависимости от модели);
  • хвост или систему азимутального привода;
  • выпрямитель, который необходим при использовании генераторов переменного тока для правильной зарядки аккумулятора.

С точки зрения мощности все ветровое генераторное оборудование классифицируется на бытовое, характеризующееся мощностью 1-10 кВт и промышленное – от 500 кВт.

Модификации ветряного генераторного оборудования

Принцип работы ветроэлектростанции позволил создавать бытовое оборудование, отличающееся расположением оси турбины. В модификациях с горизонтальным расположением есть различия в системах, управляющих роторами. При азимутальном приводе фиксация направления ветра осуществляется электроникой. В зависимости от полученных данных происходит разворот от ветра в случае, если его скорость выше номинальной.

Если система управления аэромеханическая, на лопастях генераторов есть специальные подвижные элементы. Именно это конструкционное решение позволяет менять расположение плоскости лопастей в зависимости от направления ветра. Таким образом достигается наиболее эффективное функционирование оборудования.

Ветровые генераторы, характеризующиеся вертикальным расположением оси, представляют собой низкоэффективные установки, которые не рекомендуется использовать вследствие этого. К такому неэффективному оборудованию относятся:

  • «Дарье» («Darrieus») – ротор, который пригоден для использования лишь в качестве анемоскопа.
  • «Савониуса» («Savonius») – ротор, недостатком которого является существующий коэффициент опережения. Это оборудование самостоятельно запуститься не способно, его необходимо раскручивать. Если этого не сделать, получать электроэнергию станет возможным только после достижения ветром скорости 10 м/с.

Наибольшее распространение в наши дни получили ветряные крыльчатые генераторы с горизонтально расположенной осью вращения. Это обусловлено тем, что в таких установках несложно достичь 30% коэффициента использования энергии ветрового потока. Данная величина может быть при определенных условиях и выше. При вертикальной оси вращения данный коэффициент в лучшем случае достигает 20%. Следовательно, энергия ветра используется неэффективно.

Если сравнивать электроснабжение от ветрогенератора и солнечных модулей, то по схеме подключения для определенного строительного объекта они являются идентичными. Поэтому в одной такой системе энергоснабжения могут быть и те, и другие генераторы. Это позволит получить максимальное количество электроэнергии от альтернативных источников.

Особенности использования ветряного генератора

Следует учитывать, что каждые 10 метров подъема позволяют получить скорость ветра на 1 м/с больше. Соответственно, от высоты мачты непосредственно зависит, насколько эффективно сможет функционировать генераторное оборудование. Также на эффективность работы будет оказывать влияние и диаметр ротора, поэтому предпочтительнее, чтобы он был большим.

Скорость ветрового потока имеет значение для работы оборудования. При скорости 1,5 м/с лопасти начинают вращаться. Генерация энергии начинается, когда скорость ветра достигает значения 3 м/с. Для украинских ветряных генераторных установок номинальной является скорость ветра 7-9 м/с. Такое оборудование способно функционировать при скорости потока воздуха до 52 м/с, что составляет около 200 км/ч.

Ветряные генераторы характеризуются обширной сферой применения. Их устанавливают в частных домовладениях, предприятиях, обособленных сооружениях и других объектах, нуждающихся в автономном энергоснабжении. Для установки предпочтительнее выбирать открытые пространства. Это могут быть возвышенности, холмы и даже мелководье.

Ветряное генераторное оборудование может быть использовано в единичном экземпляре либо группой. Для масштабных объектов такие устройства объединяют в парки. Использование возможно в качестве основного или дополнительного источника энергии.

Ветрогенераторы устройство и принцип работы

Принцип работы ветрогенератора

В основу функционирования ветрогенератора положена трансформация кинетической энергии ветра в механическую энергию ротора, которая затем преобразуется в электроэнергию.

Принцип работы достаточно прост: вращение лопастей, закрепленных на оси устройства, приводит к круговым движениям роторгенератора, благодаря чему вырабатывается электроэнергия.

Получаемый нестабильный переменный ток «стекает» в контроллер, где он преобразуется в постоянное напряжение, способное зарядить батареи. Оттуда питание поступает на инвертор, где оно трансформируется в переменное напряжение с показателем 220/380 В, которое и подается потребителям.

Мощность ветрогенератора напрямую зависит от мощности потока воздуха (N), рассчитывается согласно формуле N=pSV 3 /2, где V – скорость ветра, S – рабочая площадь, p – плотность воздуха.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Ветряки необычных конструкций

Согласно расчетным данным, максимально возможный КПД ветрогенератора составляет 59,3%. Причина этого кроется в особенностях конструкции ветряков и в большом количестве потерь на трение, передачу вращения и прочих тонких эффектах, в сумме отбирающих половину (а то и больше) эффективности устройств. Ограниченные возможности существующих ныне ветрогенераторов стали причиной активного поиска более удачных конструкций, работающих на иных принципах и способных к более интенсивному приему энергии ветра.

Наиболее привлекательна идея отказаться от привычных лопастей и пойти по пути использования более простых конструкций. Это позволит снизить расходы на производство и обслуживание, увеличит срок службы, снизит уровень шума и опасность для птиц и животных. Разработки, уже имеющиеся в этом направлении, сулят большие перспективы в случае их широкого распространения.

Классификация

Ветрогенераторы подразделяются по расположению оси вращения на конструкции с:

  • вертикальной осью (перпендикулярной земле);
  • горизонтальной осью (параллельной земле).

По материалам, из которых производят лопасти, ветряки классифицируются на:

По числу лопастей подразделяется на:

  • генераторы с 2-мя лопастями;
  • генераторы с 3-мя лопастями;
  • многолопастные генераторы, с числом лопастей от 50-ти.

По типу винтового шага различают генераторы с:

  • постоянным шагом;
  • переменным шагом.

По типу конструкции:

Промышленные ветряки строят, преимущественно, с горизонтальной осью вращения и жесткими лопастями.

Парусные ветряки и генераторы с вертикальными осями вращения часто устанавливают для снабжения энергией частных домов и малых строений.

Ветротурбинная установка – ветрогенератор, турбина которого, имеет цилиндрическую форму с установленными внутри нее лопастями. По сути, это ветряк с горизонтальной осью вращения, края лопастей которого защищены цилиндром. Отличается простой, надежной конструкцией, большим, по сравнению с лопастными ветряками, КПД.

Ветровые генераторы: обзор, принцип работы, конструкция и устройство

Системы альтернативного энергообеспечения для дома становятся все более актуальными по мере развития средств электрического преобразования. Практически бесплатную энергию природных явлений сегодня можно конвертировать в полноценный ток, который может питать бытовые приборы. Наиболее популярной концепцией такого рода является солнечная энергетика, но и ветровые генераторы имеют массу преимуществ. Прежде всего, вырабатываемой таким образом энергии может хватить на обслуживание частного дома. Другой вопрос, как технически реализовать такую станцию.

Принцип работы ветрогенератора

Начать следует с того, что в результате неравномерного нагрева атмосферы Солнцем формируются перемещающиеся потоки воздуха – от зон повышенного давления к зонам с низким давлением. В процессе воздушных течений и возникает ветер, энергию которого можно использовать в разных целях. К слову, простейшим примером ветряка-генератора является мельница – хотя она не преобразует энергию, а сразу направляет ее в рабочее русло.

Для плодотворного использования современных ветряков требуется соответствующая скорость воздушных потоков. Например, ветер со скоростью порядка 5-6 м/с дает лишь минимальный энергетический эффект. Оптимальным же считается уровень в 15-20 м/с. Этого достаточно, чтобы снабжать ветровые генераторы для дома, но промышленные станции требуют в разы большего силового воздействия. Ветер воздействует на рабочие части генератора, в результате чего активизируется двигатель. Он, в свою очередь, транслирует энергию в блок преобразователя. Конечным приемником энергии выступает аккумулятор. Батарея накапливает энергетический потенциал, отдавая его потребителю уже в виде электричества.

Общее устройство станции

Традиционное устройство ветряка предполагает наличие генераторного блока, хвостовика с мачтой (элементы забора ветровой энергии), инвертора и аккумулятора. В состав более современных станций входит и контроллер – это блок управления ветряком, который регулирует параметры конструкции и батареи.

Что касается элементов забора усилия, то они обычно представлены лопастями, которые крепятся на роторе. В результате его вращения генерирующий двигатель формирует переменный ток. Далее через преобразователь система создает напряжение в аккумуляторе. Последний выступает связующим звеном между генератором ветряка и потребителями.

Читайте также:  Схема подключения двухклавишного выключателя на две лампочки: монтаж

Надо отметить, что в большинстве своем ветровые генераторы являются автономными устройствами. То есть они не требуют стороннего энергоснабжения. Во всяком случае, аккумулятор питается непосредственно от энергии, получаемой от преобразователя. Однако в промышленных крупных установках предусматриваются системы аварийного энергоснабжения, которые обеспечивают энергией обслуживающую генератор инфраструктуру в случаях, когда местной вырабатываемой мощности оказывается недостаточно.

Виды конструкций

В современных конструкциях ветряков используют один из двух вариантов двигателей – с горизонтальной и вертикальной осью вращения. Иначе их называют, соответственно, крыльчатыми и карусельными. Что касается горизонтального устройства, то оно внешне напоминает ту же мельницу, но с меньшим количеством лопастей. Это ветровые генераторы, в которых акцент делается на аэродинамические характеристики. По расчетам специалистов, эффективность работы ветряка зависит не от количества лопастей, а от их длины и качества ротора. Поэтому крыльчатые ветродвигатели часто оснащаются всего одной-двумя лопастями, длина которых может достигать 100 м – разумеется, в крупных промышленных установках.

Карусельные модели выгодны тем, что не зависят от направления ветра. В простейших конструкциях предусматривается всего одна лентообразная лопасть, которая спиралью проходит через столбчатый стержень. Поэтому вертикальный ветровой генератор даже при небольшой скорости потоков воздуха может генерировать минимальные объемы энергии. С другой стороны, при сильном ветре такие конструкции невыгодны по той причине, что из-за сил противодействия спиральная лента тормозит саму себя, ограничивая производительность.

Проблематика использования ветряков

При всей привлекательности ветродвигателей как бесплатного источника энергии, их эксплуатация сопрягается с целым рядом неэкономических проблем. Прежде всего это непостоянство. Очевидно, что пользователь никак не может влиять на силу ветра и ему остается лишь надеяться на изменение погодных условий. Именно по этой причине на крупных ветровых станциях подключают аварийное энергоснабжение – как раз на случай длительного отсутствия ветровых потоков достаточной силы.

Этим же аспектом обусловлено и внедрение в комплекс генераторов вспомогательной аппаратуры. Наличие батареи аккумулятора, инвертора и резервного генератора обязательно для того, чтобы мощность стабилизировалась и напряжение выравнивалось, так как ветер может вовсе отсутствовать, а может выдавать разную скорость движения.

И здесь уже возникает экономический аспект, поскольку широко укомплектованные ветровые генераторы в любом случае требуют расходов на техническое содержание. Тем не менее по мере оптимизации энергетического оборудования и эта проблема постепенно утрачивает главенствующее значение, оставляя возможности для развития отрасли.

Самодельные ветряки

Реализация собственного проекта ветродвигателя вполне возможна без подключения специалистов. Конечно, если речь идет о домашнем изготовлении, то проект с расчетами мощности и балансировки будет шаблонным. Начинать подобные предприятия рекомендуется с небольших ветряков, силовой потенциал которых составляет 10-20 Вт. Такие устройства требуют минимальных затрат, но зато дадут практический опыт и наглядное представление о том, каким образом вырабатывается энергия. Далее – по мере усложнения конструкции и увеличения ее размеров – можно получить эффективный ветровой генератор для дома. Своими руками такую конструкцию можно собрать из готовых технических компонентов, агрегатов и деталей, которые доступны на рынке. Ниже представлено несколько вариантов сборки домашнего ветрогенератора.

Модели на электродвигателе

Чаще всего бытовые ветрогенераторы выполняют из электродвигателей постоянного тока, работающих на низких оборотах. Желательно ориентироваться на конструкцию с постоянными магнитами, которая позволит обеспечивать напряжение на уровне 80–100 Вт.

Нередко для подобных целей применяются автомобильные генераторы, однако в такую конструкцию должен будет войти и мультипликатор. Связано это с тем, что автогенератор способен обеспечивать достаточное напряжение лишь в условиях повышенных оборотов – частотой до 2500 об/мин. На такую нагрузку просто не рассчитан домашний ветровой генератор. Своими руками потребуется реконструировать силовую установку, дополнив ее неодимовыми магнитами в роторной области. Могут потребоваться и точные токарные работы, но это уже зависит от типа конструкции ветряка.

Модели из ротора Савониуса

Это концепция вертикально-осевого генератора, который базируется на так называемом роторе Савониуса карусельного типа. Сразу надо сказать, что самодельный ветровой генератор этого типа будет способен обеспечивать мощность на уровне 20 Вт. Этого недостаточно для энергоснабжения дома, но на питание некоторых приборов хватит. В работе будут использоваться алюминиевые листы, трубы и аккумулятор. Из листов и труб сооружается карусельный каркас с внутренними лопастями. Может получиться 2-3 секции в зависимости от объема материала.

В качестве фиксирующих элементов применяют саморезы и заклепки с уголками. Если удастся сделать ветровой генератор своими руками на базе ротора Савониуса для энергоснабжения 12-вольтных приборов, то будет смысл увеличить размеры рабочей конструкции-приемника, и тогда можно говорить о существенной экономии на энергоснабжении всего дома.

Монтажные установочные работы

С конструктивной точки зрения ветряк состоит из трех базовых компонентов – двигателя, приемника ветрового усилия (лопастей) и аккумулятора с преобразователем. Разумеется, в конструкцию могут добавляться и другие части, но для монтажа стоит рассматривать эти узлы в качестве базовых. Как же выполняется установка ветровых генераторов из разных компонентов? Работа начинается с соединения вала двигателя с несущей трубой генератора. Труба станет стержнем всей конструкции. В ней следует изначально проделать несколько отверстий на обоих концах, что облегчит монтажные операции.

На следующем этапе монтируется мачта с ротором. Она должна быть или жестко приварена, или зафиксирована специальными скобами. Затем следует другой вопрос – как сделать ветровой генератор, чтобы он физически выдерживал сильные воздушные потоки? Эта способность в немалой степени будет зависеть от фундамента, в который интегрирована труба. Желательно устроить бетонную площадку с несколькими пластами укрепления.

Заключение

Пока еще энтузиасты, которые экспериментируют с подобными источниками энергии, в основном руководствуются любительским интересом. На практике ветровые генераторы лишь в единичных случаях оказываются финансово выгодным оснащением. Безусловно, сам принцип выработки энергии из ветра действует и дает выгоды. Но полноценное обеспечение дома за счет таких стаций пока реализуется в небольшом проценте случаев. Несмотря на это, технологическое развитие компонентов генератора внушает оптимизм в успешность развития этого сегмента энергетики.

Устройство и принцип работы

Любой ветряной генератор состоит из нескольких типовых укрупненных блоков. Агрегат обязательно содержит турбину, которая вращается под действием воздушного потока, непосредственно или чаще всего через повышающий редуктор передает создаваемый момент на вал электрического генератора. Ротор вращается внутри статора на основе неодимовых магнитов, в результате чего вырабатывается электрическая энергия.

Конструкция ветряного генератора небольшой мощности показана на рисунке 1.

Рис. 1. Конструкция самодельного ветрового генератора

Вырабатываемая ветряным генератором электрическая энергия поступает в промежуточный накопитель, функции которого обычно берет на себя аккумуляторная батарея. Ток, отдаваемый аккумулятором, питает инвертор, с выхода которого снимают нормальное 220-вольтовое переменное напряжение бытовой частоты.

Наличие аккумулятора обязательно, т.к. он позволяет сгладить колебания мощности, снимаемой с турбины. Свою роль в этом играет факт того, что бытовой ветряной генератор устойчиво функционирует при скорости ветра от 6 м/с и выше, тогда как среднегодовое значение этого параметра на большинстве территории России оказывается примерно в полтора раза ниже.

Необходимые переключения, регулировки и прочие функции реализует блок автоматики.

Соответствующий уровень эксплуатационной надежности достигается наличие у конструкции запасов по отдаваемой мощности (обычно 10 – 20%).

Устройство, принцип работы, преимущества и недостатки ветряных электростанций

Обновлено: 4 мая 2019

Энергетическая отрасль справляется со своей задачей достаточно уверенно, но масштабы нашей страны таковы, что полное обеспечение электроэнергией всех отдаленных или труднодоступных районов пока невозможно. Это связано с множеством факторов, преодолеть которые в нынешних условиях слишком дорого или технически недостижимо.

Поэтому все более пристальное внимание приходится обращать на альтернативные источники, способные удовлетворять потребности отсталых регионов без участия магистральных сетей. Перспективным направлением является ветроэнергетика, использующая дармовой источник энергии — силу ветра.

Устройство и виды ветровых электростанций

Ветроэлектростанции (ВЭС) используют энергию ветра для выработки электротока. Крупные станции состоят из множества ветрогенераторов, объединенных в единую сеть и питающих большие массивы — поселки, города, регионы. Более мелкие способны обеспечивать небольшие жилые массивы или отдельные дома. Станции классифицируются по различным признакам, например, по функциональности:

  • мобильные,
  • стационарные.

По типу конструкции:

Наибольшее распространение в мире получили крыльчатные станции. Они имеют большую эффективность и способны производить достаточно большое количество электроэнергии, чтобы обеспечивать ею потребителей в масштабах целой энергетической отрасли. При этом, распространение таких станций имеет специфическую конфигурацию и встречается не повсеместно.

Принцип работы

Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с вертикальной осью вращения. Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.

Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.

Все виды действуют по одному принципу — поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.

Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции — ВЭС.

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики — никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • КПД ветряных электростанций низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. Наиболее производительные станции полностью не окупаются.

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Экономическое обоснование строительства ВЭС

С точки зрения экономики, строительство ВЭС имеет смысл только при отсутствии других способов энергообеспечения. Оборудование стоит очень дорого, обслуживание и ремонт требуют постоянных расходов, а срок службы ограничен 20 годами, и это в условиях Европы. Для России этот срок можно снизить не менее, чем на треть. Поэтому использование ВЭС экономически малоэффективно.

С другой стороны, при полном отсутствии альтернативных вариантов или при наличии оптимальных условий, обеспечивающих качественную и равномерную работу ветряков, использование ВЭС становится вполне приемлемым способом энергообеспечения.

Важно! Речь идет именно о крупных станциях, снабжающих целые регионы. Ситуация с бытовыми или частными станциями выглядит более привлекательно.

Мощности промышленных станций

Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт, и это еще не предел.

Следует сразу же оговориться, что речь идет о лидерах в ветроэнергетике, другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.

Мелкие станции имеют более скромные показатели и могут рассматриваться только как точечные источники, питающие ограниченное число потребителей.

Ведущие мировые производители

В число наиболее известных производителей ветрогенераторов и оборудования для ветроэнергетической отрасли входят компании:

Российские производители пока не готовы конкурировать с этими фирмами, так как вопрос о создании качественных и производительных ветрогенераторов в России до сих пор не ставился достаточно плотно.

География применения

Наибольшее распространение ветроэнергетика получила на западном побережье Атлантики, в частности, в Германии. Там имеются наилучшие условия — ровные и сильные ветра, оптимальные климатические показатели. Но основной причиной широкого распространения ВЭС именно в этом регионе стало отсутствие возможностей для строительства гидроэлектростанций, вынудившее правительства стран этого региона использовать доступные методы получения электроэнергии. При этом, имеются установки и в балтийском регионе, в Дании, Голландии.

Читайте также:  Назначение и установка двухполюсного и трехполюсного выключателя

Россия пока отстает в этом вопросе, за прошедшее десятилетие в эксплуатацию сдан едва ли десяток ВЭС. Причина такого отставания кроется в большом развитии гидроэнергетики и отсутствии должных условий для эксплуатации промышленных ветроэнергетических станций. Тем не менее, отмечается рост производства небольших установок, способных обеспечивать энергией отдельные усадьбы.

Факты и заблуждения

Малое распространение ветроэнергетических установок и отсутствие опыта общения с ними породили массу заблуждений относительно свойств и воздействия ВЭС на организм человека. Так, широко распространено мнение о необычайно высоком уровне шума, производимого работающим ветрогенератором. Действительно, определенный шум имеется, но его уровень гораздо ниже, чем принято считать. Так, шум от промышленных моделей на расстоянии 200-300 м воспринимается на слух так же, как звук от работающего бытового холодильника.

Другая проблема, которую необоснованно раздувают несведущие люди — создание непреодолимых помех радио и телевизионным сигналам. Этот вопрос был решен раньше, чем о нем узнали пользователи — каждый мощный промышленный ветряк снабжен качественным фильтром радиопомех, способным полностью исключить влияние устройства на эфир.

Люди, живущие поблизости от турбин, будут постоянно находиться в зоне мерцания тени. Это термин, обозначающий некомфортное ощущение от мигающих световых проявлений. Вращающиеся лопасти создают такой эффект, но его значение сильно преувеличено. Даже самые чувствительные люди всегда могут попросту отвернуться от турбины, если случилось оказаться поблизости от нее.

Существуют и другие, надуманные и вполне реально существующие факты, касающиеся работы ВЭС, их воздействия на организм человека и окружающую природу. Част из них является обычными слухами, другая часть настолько преувеличена, что не заслуживает даже обсуждения. Ветроэнергетика — полноценная отрасль, способная решать вопросы энергообеспечения как в солидных масштабах, так и в пределах маленького дачного домика.

Частные ветряные электростанции

Для России наиболее актуальным вопросом является распространение именно небольших станций, обеспечивающих один дом или усадьбу. Строительство крупных ВЭС в климатических условиях нашей страны нецелесообразно и нерентабельно. Самая большая ценность ветрогенераторов кроется в создании возможности обеспечить энергией отсталые или отдаленные населенные пункты, где нет сетевого подключения.

Для таких районов применение небольших частных станций является оптимальным способом решения вопроса, так как работа ветряка не требует обеспечения топливом, устройство несложно и свободно поддается ремонту. Обеспечить такие регионы дополнительным оборудованием намного проще и дешевле, чем выделять большие средства на проведение линии электропередач, особенно, если речь идет о гористой местности. Небольшие ветряки способны вырабатывать достаточное количество энергии, не нуждаясь в расходах на содержание или топливо, что делает их весьма перспективными и привлекательными вариантами решения проблемы.

Обзор цен на популярные модели

Стоимость ветрогенераторов высока. Этот момент является самым труднопреодолимым для распространения ветроэнергетических технологий. Многие владельцы домов с удовольствием установили бы у себя на участке ветряки, но не имеют средств на их приобретение. Установка, способная обеспечить освещение участка, стоит около 100 тыс руб.

Более мощная конструкция, позволяющая снабдить электроэнергией коттедж, обойдется в 250 тыс.

ВЭС, способная обеспечить небольшое фермерское хозяйство, стоит около 500 тыс руб. И это еще не предел. При таких ценах ожидать быстрого распространения ветрогенераторов не приходится, поэтому вся надежда на появление отечественных моделей, способных решить вопрос дороговизны оборудования. Как вариант, можно купить относительно недорогую китайскую модель. Такие устройства не поддаются ремонту, являясь, по сути, одноразовыми, но их цена намного ниже, чем стоимость аналогичных по мощности западных образцов.

Как сделать ветряную электростанцию?

Дороговизна промышленных моделей вынуждает людей, способных пользоваться инструментами и обладающих определенными познаниями, создавать самодельные ветряки. Расходы на такое устройство несравнимы с тратами на заводские модели, а эффект, полученный от самоделок, зачастую превосходит показатели прославленных зарубежных изделий.

Для изготовления станции понадобится:

  • комплект оборудования — контроллер заряда, инвертор, аккумулятор;
  • генератор, способный работать на низких скоростях. Чаще всего используется автомобильный или тракторный генераторы, прошедшие некоторую модернизацию;
  • ветряк — вращающийся ротор, установленный на мачте или основании нужных размеров.


Оборудование для станции может быть собрано самостоятельно или приобретено в готовом виде. Изготовление генератора из готового устройства занимает один день (если иметь представление о том, что надо делать). Ветряк делается из подручных материалов — металлических бочек, листового металла и т.п.

Все элементы конструкции собираются воедино, система запускается, производится оценка ее характеристик и, если надо, вносятся необходимые изменения. Ветряк, собранный своими руками, ремонтируется совершенно без проблем, так как вся его конструкция известна мастеру, что называется, до последнего винтика.

Эксплуатация ВЭС не требует особых расходов, все вложения делаются единовременно. Срок службы системы рассчитывается на 20 лет, но при изготовлении своими руками он практически не ограничен, поскольку в любое время возможна модернизация или ремонт конструкции.

Кинетический ветрогенератор: используем энергию воздушных потоков

Что потребителям мешает пойти чуть дальше отделения стеклянных бутылок от пластиковых и сдачи использованных батареек перед входом в супермаркет и сделать первый шаг к биоэкономике, то есть экономике, при которой приоритет отдается производству экологичной продукции?

Без электроэнергии жизнь современного человека представить уже нельзя. Вот только стоимость ее неуклонно возрастает, поэтому все больший интерес вызывают так называемые альтернативные источники энергии. К их числу относятся кинетические ветрогенераторы – достаточно простые устройства, позволяющие без особых хлопот получать электроэнергию для бытовых и даже для промышленных нужд.

Принцип работы ветрогенератора предельно прост. Вращающиеся лопасти передают кинетическую энергию ветра на роторогенератор, который, в свою очередь, преобразует ее в электроэнергию. Таким образом, можно получить только нестабильный переменный ток. Он направляется к контроллеру, где происходит еще одно преобразование. Далее ток уже постоянного напряжения поступает в аккумуляторы.

Батареи накапливают заряд, который при необходимости может расходоваться потребителем. Но перед этим постоянный ток вновь преобразуется в переменный со стабильным напряжением, для чего используется инвертор одной из возможных разновидностей.

Для трехфазных сетей устанавливают инвертор трехфазного напряжения. Если электричество предназначено для не слишком чувствительной техники, например ТЭНов или ламп накаливания, может использоваться прибор, выдающий модифицированную синусоиду. Для чувствительного оборудования монтируют установки, вырабатывающие только чистую синусоиду. Если подача электроэнергии осуществляется непосредственно в сеть, ставятся специальные сетевые инверторы.

Ветрогенераторы комплектуются датчиками, отслеживающими направление воздушных потоков, что помогает устройству эффективно работать. Помимо этого присутствуют автоматические переключатели, которые координируют совместную работу ветрогенератора и других источников энергии.

Производители выпускают широкий ассортимент ветровых установок, значительно разнящихся по конструкции и назначению. Ветряные турбины для промышленных целей представляют собой мощнейшие устройства, выдающие десятки мегаватт энергии. Для бытовых целей используют агрегаты минимальной мощности. Они могут устанавливаться непосредственно на территории домовладения. Причем для мачт высотой не больше 25 м специальное разрешение на установку не требуется.

Конструктивно все ветряки можно поделить на две группы. К первой относятся горизонтальные установки, которые еще называют крыльчатыми или пропеллерными. Они представляют собой несколько лопастей, обычно их от трех до пяти, установленных на горизонтально ориентированную ось.

При вращении такие конструкции позволяют получить максимально возможную отдачу энергии. Правда, многое зависит от высоты установки генератора. Чем выше установлены лопасти, тем эффективнее работает устройство. Именно такие ветряки используются для промышленных целей. В быту они тоже хорошо себя зарекомендовали. Особенно эффективно использование пропеллерных ветряков на равнинах, где часто дуют сильные ветры.

Ветровые генераторы вертикального типа имеют несколько разновидностей. Классический вариант отличается меньшей, чем крыльчатый, эффективностью. Зато может стабильно работать на турбулентных воздушных потоках. Поэтому устанавливается там, где почти никогда не бывает сильного ветра.

Повысить результативность классического вертикального ветряка можно только за счет увеличения его размеров. Это делает оборудование более уязвимым для природных явлений и значительно увеличивает его стоимость. Максимально эффективной из всех вертикальных конструкций признан ротор Дарье.

Его результативность почти аналогична пропеллерным моделям. Еще одно важное достоинство – минимальный шум при работе. Однако есть и значимый недостаток, которым считается весьма низкий стартовый момент.

Такой генератор практически не способен самостоятельно начать работу. Этого недостатка лишены своеобразные гибриды классического вертикального ветряка и ротора Дарье, которые используются наиболее широко.

Еще один тип ветрогенератора – парусная установка. Она может быть ориентирована как вертикально, так и горизонтально. Основная отличительная особенность – наличие так называемого ветрового колеса, оснащенного большим количеством широких лопастей или парусов.

Это самая тихоходная из всех модификаций ветрогенератора, эффективность ее тоже невелика. Тем не менее, она широко используется в домашнем хозяйстве. Ее крайне просто собрать и эксплуатировать. Кроме того, конструкция обладает удачным сочетанием низких оборотов и высокого крутящего момента. Это позволяет ей не только вырабатывать энергию, но и напрямую вращать различные механизмы, к примеру, приводить в движение насос.

Ветрогенератор способен обеспечить электроэнергией любое домовладение, важно только правильно выбрать мощность оборудования и грамотно его разместить. Нужно знать, что мощность, которую выдает генератор, пропорциональна увеличенной в три раза скорости ветра. Таким образом, в местностях со слабыми воздушными потоками установка даже мощного ветряка будет, скорее всего, мало целесообразна. Но если поставить его в составе комбинированной схемы вместе с солнечной батареей, например, получится вполне работоспособный вариант. Поэтому решение об установке такой конструкции стоит принимать с учетом рекомендаций специалистов. опубликовано econet.ru Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Как сделать кинетический ветрогенератор

Иметь свой ветрогенератор очень выгодно. Во-первых, человек получает бесплатную электроэнергию. Во-вторых, электричество можно добыть в удаленных от цивилизации местах, где не проходит ЛЭП. Ветряк представляет собой устройство, предназначенное для генерирования кинетической энергии ветра. Многие умельцы научились собирать вертикальный ветрогенератор своими руками, а как это делается мы сейчас и узнаем.

Устройство и разновидности ветряков

Ветрогенераторы имеют много названий, но правильней их обозначить как ветровая электростанция. Состоит ВЭС из электрооборудования и механического сооружения – ветряка, которые связаны между собой в единую систему. Электроустановка помогает превратить ветер в источник энергии.

Разновидностей ветрогенераторов много, но по расположению рабочей оси их условно разделяют на две группы:

  • Ветряки с горизонтальной осью вращения являются самыми распространенными. Электроустановка отличается высоким КПД. Кроме того, сам механизм лучше противостоит ураганам, а при слабом ветре запуск ротора происходит быстрее. У горизонтальных ветрогенераторов проще регулируется мощность.
  • Ветряки с вертикальной осью вращения способны работать даже при слабой скорости ветра. Турбины не шумят и проще в изготовлении, поэтому чаще всего их устанавливают умельцы в своем дворе. Однако особенность конструкции вертикального ветряка позволяет его устанавливать только низко от земли. Из-за этого сильно снижается КПД электроустановки.

Различаются ветрогенераторы по типу рабочего колеса:

  • Пропеллерные или крыльчатые модели оснащены лопастями, которые по отношению к рабочему горизонтальному валу стоят перпендикулярно.
  • Карусельные модели еще называют роторными. Они характерны для вертикальных ветряков.
  • Барабанные модели аналогично имеют вертикальную рабочую ось.

Для генерирования кинетической энергии ветра в промышленных масштабах обычно используют пропеллерные ветрогенераторы. Модели барабанного и карусельного типа отличаются большими габаритами, а также менее эффективным устройством механизма.

Все ветряки могут комплектоваться мультипликатором. Этот редуктор во время работы создает много шума. В домашних ветряках мультипликаторы обычно не используют.

Принцип работы ветряка

Стоит отметить, что принцип работы ветрогенератора одинаков, независимо от его конструкции и внешнего вида. Генерирование энергии начинается с момента вращения лопастей ветряка. В это время между ротором и статором генератора создается магнитное поле. Оно и служит источником энергии, вырабатывающим электричество.

Итак, как мы выяснили, ветрогенератор состоит из двух основных частей: вращающегося механизма с лопастями и генератора. Теперь о работе мультипликатора. Этот редуктор устанавливают на ветряк, чтобы увеличить обороты рабочего вала.

Во время вращения ротора генератора вырабатывается переменный ток, то есть, выходит три фазы. Сгенерированная энергия попадает на контроллер, а от него идет к аккумулятору. В этой цепочке стоит еще один важный прибор – инвертор. Он преобразовывает ток до стабильных параметров и подает через сеть потребителю.

Ветряк industrial craft 2

В сфере ветроэнергетики большую известность имеет кинетический ветрогенератор industrial craft 2, имеющий модифицированный блок для генерирования энергии ветра. Для расчета мощности электроустановки сумму скоростей его рабочих органов умножают на значение 0,1. Размер рабочей области обусловлен габаритами ротора. Во время вращения он вырабатывает кинетическую kU, а не электрическую EU энергию.

Читайте также:  Обзор методов измерения сопротивления заземления

Вращение лопастей зависит от порывов ветра. Самая оптимальная скорость наблюдается на высоте 160–162 м. Гроза увеличивает скорость ветра на 50%, а простой дождь – до 20%.

Роторы ветрогенератора industrial craft 2 различаются габаритами и материалом лопастей, а также предельными показателями силы ветра, при которых они способны работать:

  • деревянный ротор с лопастями 5х5 рассчитан на диапазон скоростей ветра от 10 до 60 MCW;
    железный ротор с лопастями 7х7 рассчитан на диапазон скоростей – от 14 до 75 MCW;
  • стальной ротор с лопастями 9х9 рассчитан на диапазон скоростей потока воздуха от 17 до 90 MCW;
  • углеволоконный ротор с лопастями 11х11 рассчитан на диапазон скоростей потока воздуха от 20 до 110 MCW.

Кинетические ветрогенераторы industrial craft 2 не ставят близко на одном уровне спиной друг к другу.

Самостоятельное изготовление вертикального ветрогенератора

В самостоятельном изготовлении ветряк с вертикальным валом самый простой. Лопасти изготавливают с любого материала, главное, чтобы он был устойчив к влаге и солнцу, а также был легкий. Для лопастей домашнего ветрогенератора можно использовать ПВХ трубу, применяемую при строительстве канализации. Этот материал отвечает всем вышеперечисленным требованиям. Из пластика вырезают четыре лопасти высотой 70 см, плюс две таких же делают из оцинковки. Жестяным элементам придают форму полукруга, после чего фиксируют с обеих сторон трубы. Остальные лопасти крепят на одинаковом расстоянии по кругу. Радиус вращения такого ветряка будет составлять 69 см.

Следующий этап – сборка ротора. Здесь понадобятся магниты. Сначала берут два ферритовых диска диаметром 23 см. С помощью клея шесть неодимовых магнитов крепят на один диск. При диаметре магнита 165 см между ними образуют угол 60 о . Если эти элементы меньшего размера, то их количество увеличивают. Приклеивают магниты не просто, как попало, а меняют поочередно полярность. На второй диск по аналогичной схеме крепят ферритовые магниты. Всю конструкцию обильно заливают клеем.

Самое сложное – это изготовление статора. Нужно найти медный провод толщиной 1 мм и из него сделать девять катушек. Каждый элемент должен содержать ровно по 60 витков. Далее, из готовых катушек собирают электрическую схему статора. Все их девять штук выкладывают по кругу. Сначала соединяют концы первой и четвертой катушки. Далее, соединяют второй свободный конец четвертой с выходом седьмой катушки. В итоге получился элемент одной фазы из трех катушек. Схему второй фазы собирают со следующих по очередности трех катушек, начиная со второго элемента. Последней собирают точно так же третью фазу, начиная с третьей катушки.

Для крепления схемы, из фанеры вырезают форму. На нее сверху кладут стеклоткань, а по ней раскладывают схему из девяти катушек. Все это заливают клеем, после чего оставляют до полного застывания. Не ранее, чем через сутки ротор со статором можно соединять. Сначала кладут ротор магнитами вверх, на нем располагают статор, а сверху укладывают второй диск магнитами вниз. Принцип соединения можно увидеть на фото.

Теперь настало время собрать ветрогенератор. Вся его схема будет состоять из рабочего колеса с лопастями, аккумулятора и инвертора. Для увеличения крутящего момента желательно установить редуктор. Работы по монтажу имеют следующий порядок:

  • Из стального уголка, труб или профиля сваривают прочную мачту. По высоте она должна поднять рабочее колесо с лопастями выше конька крыши.
  • Под мачту заливают фундамент. Обязательно делают армирование и предусматривают выступающие из бетона анкерные крепления.
  • Далее, на мачту фиксируют рабочее колесо с генератором.
  • После установки мачты на фундамент выполняют ее крепление к анкерам, после чего усиливают стальными растяжками. Для этих целей подойдет трос или стальной прут толщиной 10–12 мм.

Когда механическая часть ветрогенератора готова, начинают собирать электрическую схему. Генератор на выходе даст трехфазный ток. Для получения постоянного напряжения в схему ставят выпрямитель из диодов. Контроль зарядки аккумулятора осуществляется через автомобильное реле. Заканчивает цепочку схемы инвертор, из которого выходит в домашнюю сеть требуемые 220 вольт.

Выходная мощность такого ветрогенератора зависит от скорости ветра. Например, при 5 м/с электроустановка выдаст около 15 Вт, а при 18 м/с можно получить на выходе до 163 Вт. Чтобы повысить производительность, мачту ветряка удлиняют до 26 м. На такой высоте скорость ветра на 30% больше, а, значит, электричества получится примерно в полтора раза больше.

На видео показана сборка генератора для ветряка:

Сборка ветрогенератора – дело сложное. Нужно знать основы электротехники, уметь читать схемы и пользоваться паяльником.

Ветрогенераторы: принцип действия, типы, применение, эффективность работы

Обладаем бесценным опытом. Знаем, что к чему.

Вся продукция сертифицирована. Гарантия от производителя

Реализация проектов по вентиляции, кондиционированию и отоплению

Собственные установщики осуществят монтаж любой сложности с гарантией

Курьером и службами почтовой перевозки. Заказ свыше 4000 грн – доставка бесплатно.

Подбор и проектирование любой сложности. Разработка концепций по всей Украине

Оплата при доставке, в офисе или через кассу банка. Плательщик НДС.

Обслуживание после окончания срока гарантии или не гарантийного случая

Похожие материалы

Альтернативная энергия для дома: солнечные и ветряные электростанции

Альтернативная энергетика для дома: источники, предназначение, эксплуатация

Солнечные батареи для энергоснабжения дома площадью 60 м²

Солнечные батареи для дома: расчет стоимости комплекта

Солнечные батареи для квартиры в многоэтажном доме

Сервис систем с ветрогенераторами

Проектирование систем альтернативной энергетики

Консалтинг систем альтернативной энергетики

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) – это прибор для превращения энергии ветра в электрическую.

Сначала он превращает кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию. Мощность ветрогенератора может быть от 5 КВт до 4500 КВт. Современные устройства генерируют энергию даже очень слабого ветра – от 4 м/с. Ветроэлектрические установки могут входить в состав частной независимой электростанции и позволяют продавать излишнюю энергию государству по условиям «зеленого тарифа». Такие сооружения могут быть источником энергии для локальных и островных объектов, так как решают проблемы энергоснабжения автономно.

Как работает ветрогенератор: принцип преобразования энергии ветра

Потоки ветра вращают лопасти ветрогенератора: проходят через турбину, приводит её в действие и она начинает вращаться. На валу турбины возникает энергия, которая будет пропорциональна ветровому потоку. Чем сильне ветер, тем большее количество энергии возникает. Далее энергия передается по валу ротору на мультипликатор (если он есть), который её генерирует. Учтите, что более продуктивными являются устройства без мультипликатора, который ускоряет вращение оси, потому что не создается, а, естественно, и не растрачивается лишняя энергия, а скорости ветра вполне достаточно для оптимальной работы ветрогенератора.

Генератор превращает механическую энергию в электрическую.

Мощность ветряка измеряется «ометаемой» площадью турбины.
Чем больший размер лопастей, тем большую мощность он создает.

Мощность ветрогенератора рассчитывается исходя из кубической зависимости скорости ветра.

Пример:

Если ветровой поток со скоростью n создает мощность 100 Вт, то поток со значеним n+1 будет создавать мощность 300 Вт, а вот n+2 – уже 900 Вт.

Поэтому, если размер турбины не большой, то нужен очень сильный поток ветра, чтобы мощность была высокой, и наоборот – большая турбина может выдавать ту же мощность при более слабом ветре.

Но для того, чтобы работа ветрогенератора была сбалансированной и выдавала нужное количество энергии нужно на этапе проектирования правильно рассчитать все необходимые параметры ветряной электростанции.

Конструкция ветряной электростанции

Система состоит из:

Конструкция ветряка:

  • Мачта (может быть трубчатого типа или «ферма»):
  • Турбина – это ротор, предназначенный для того, чтобы превратить энергию прямолинейного движения воздушного потока;
  • Система управления турбиной;
  • Генератор преобразовывает энергию ветра в электрическую;
  • Ланка передачи энергии (мультипликатор или сам вал);
  • Выпрямитель (поскольку зачастую в ветряках используются генераторы переменного тока для того, чтобы правильно зарядить аккумулятор или отправить энергию в сеть (бытовой сегмент));
  • Система азимутального привода или хвост (иногда устанавливаются машины, у которых к ветряку прикрепляется «хвост», он ориентируется по ветру самостоятельно).

Типы ветрогенераторов

По мощности и области применения ветрогенераторы бывают:

  • промышленные (мощность от 500 КВт);
  • бытовые (мощность 0-10 КВт).

Устройства с мощностью от 10 до 500 КВт используются крайне редко.

По конструкции бытовые типы ветряков отличаются конструкцией ротора (турбины):

  1. С горизонтальной осью. Отличаются системой управления турбины (ротора), она может быть:
  • аэромеханической (на лопастях установлены специальный «закрилышки», которые меняю угол направления ветра: чем больше скорость ветра, тем больше угол атаки лопастей и наоборот). Меняя угол атаки, мы можем управлять турбиной как на малых, так и на больших скоростях для эффективной и правильной работы устройства.
  • с азимутальным приводом (электроника фиксирует скорость и направление ветра, поворачивает или отворачивает турбину от ветра, если скорость ветра превышает номинальную).

  1. С вертикальной осью – это малоэффективные устройства, которые не рекомендовано использовать из-за ряда недостатков.
    Они отличаются типом турбин:
  • ротор Савониуса (Savonius). Их недостатком является коэффициент опережения. Если скорость ветра 10 м/с, то законцовка турбины будет вращаться со скоростью 100 м/с, соответственно, коэффициент опережения – 10. Фактически ветряк не может самостоятельно стартовать, его нужно раскручивать и только после этого он начинает работать. Если этого не делать, то он начет вырабатывать энергию только при скорости ветра 10 м/с и больше.
  • ротор Дарье (Darrieus). Применяются разве что как анемоскопы, так как малоэффективные.

Сейчас широкое применение получили ветрогенераторы с горизонтальной осью вращения (крыльчатые), благодаря тому, что у них коэффициент использования энергии ветрового потока (КИЭВ) легко достигает 30% и больше, а у ветрогенераторов с вертикальной осью вращения КИЭВ составляет около 20%.

Система бытового энергоснабжения с использованием ветрогенератора похожа на систему с солнечными модулями, в одной системе могут использоваться как ветрогенераторы, так и солнечные модули.

От высоты мачты и диаметра ротора зависит количество выработанной энергии следующим образом: на каждые 10 метров подъёма ветряка добавляется 1 м/с скорости ветра. Чем выше мачта, тем больше вероятность того, что он будет работать максимально эффективно. И та же ситуация с ротором: чем больше диаметр, тем больше выработка энергии.

Значения силы ветрового потока для работы ветряка:

  1. Скорость ветра для начала вращения лопастей, при котором мощности нет вообще – от 1,5 м/с.
  2. Минимальная скорость ветра при которой уже начинается генерация мощности – 3 м/с.
  3. Номинальная скорость ветра (для ветрогенераторов украинского производства) – 7-9 м/с.
  4. Максимальная скорость ветра, при которой ветрогенератор украинского производства сохраняет свою работоспособность– 52 м/с (200 км/час), что свидетельствует о высоком качестве сборки установки и прочности материалов изготовления.

Применение и рекомендации по месту установки ветрогенератора

Ветрогенераторы характеризуются широким применением на объектах различного назначения: частные дома и домохозяйства, предприятия, отдельные сооружения, которые требуют автономного энергоснабжения.

Их устанавливают на открытых, желательно возвышенных территориях, где есть хороший ветровой потенциал: поле, горы (холмы), остров и даже мелководье.

Ветрогенераторы могут устанавливаться как по одиночке так и группами, объединяясь в ветропарк для энергоснабжения масштабных предприятий.

Чаще всего ветряные электростанции применяются для энергоснабжения автономных зданий, где отсутствует подключение к городской электросети.

Маломощные ветряки используются на охотничьих угодьях, рыбацких станах, на дачных участках для пчеловодов, на автономных светильниках для освещения дорог.

Учитывайте, что во время работы ветряная установка может издавать небольшой шум, поэтому желательно сооружать её не под самыми окнами жилого дома. Так как этот звук не громкий, то к нему легко привыкнуть. И, кстати, домашним животным, у которых слух намного чувствительнее, чем у человека, он тоже не мешает.

В настоящее время применение ветрогенераторов как альтернативы центральному энергоснабжению нерентабельно из-за большой стоимости оборудования, но, в то же время, возможно использование ветрогенераторов в местах, где отсутствует централизованное энергоснабжение или присутствуют частые перебои. Период окупаемости – 25 лет.

Также существует техническая возможность исполнения генератора выдающего переменный ток, который можно использовать для прямого питания потребителей, которые не требуют бесперебойного питания, к примеру, насос для осушения какой-нибудь территории.

В Украине на всей территории возможно использование ветрогенераторов с той или иной степенью эффективности. Наиболее выгодно, с точки зрения ветрового потенциала, размещать ветрогенераторы в Крыму и Закарпатье.

Ссылка на основную публикацию