Бесконтактный выключатель: назначение + маркировка и установка

Бесконтактный выключатель — назначение маркировка и установка

Опубликовано Артём в 03.03.2019 03.03.2019

Бесконтактный выключатель — это устройство управления светом без непосредственного участия человека. В качестве примера бесконтактных приборов можно привести инфракрасные датчики, которые включают свет лишь при приближении к помещению человека. Когда же помещение оказывается пустым, инфракрасное устройство гасит свет.

Принцип действия бесконтактных датчиков

Принцип действия бесконтактных выключателей (датчиков) основан на изменении амплитуды колебаний генератора при внесении в чувствительную зону датчика конкретного материала определенных размеров. Расстояние переключения устройства задается в зависимости от потребностей процесса и разновидности датчика. Бесконтактный способ распознавания объекта воздействия позволяет существенно повысить надежность работы устройства по причине отсутствия движущихся и трущихся деталей.

Перечень функциональных возможностей бесконтактных датчиков широк. Обнаружение положения объекта, подсчет, позиционирование и сортировка предметов на конвейерах, контроль перемещения и скорости, обнаружение поломок механизмов, определение угла поворота, измерение перекоса и еще много других функций заложено в понятие «датчик приближения», как еще называют бесконтактный выключатель.

Именно потому их используют в самых разных отраслях: от металлообработки до пищевого производства, как элемент автоматизации транспорта и для контроля в станкостроении, для управления водо- газо, нефтеснабжением и на морских нефтеперерабатывающих платформах. Чтобы подобрать подходящий переключатель, стоит ознакомиться с классификацией датчиков по принципу их действия.

Индуктивные бесконтактные выключатели

Индуктивные датчики реагируют на металлические, магнитные, ферромагнитные или аморфные материалы нужных размеров. Эффект достигается за счет изменения амплитуды колебаний генератора при попадании объекта в чувствительную зону датчика.

Подберите индуктивный выключатель:

по параметрам по аналогам по отраслям по маркировке

Емкостные бесконтактные выключатели

Емкостные выключатели обнаруживают как металлические, так и диэлектрические объекты. Принцип действия выключателя основан на изменении емкости конденсатора, выполняющего роль чувствительного элемента, при внесении в чувствительную зону объектов.

Подберите емкостный выключатель:

по параметрам по аналогам по отраслям по маркировке

Оптические бесконтактные выключатели

Оптические бесконтактные датчики обнаруживают контролируемые объекты, отражающие или прерывающие оптическое излучение. Коммутационный элемент у оптических бесконтактных датчиков полупроводниковый или релейный. Дальность действия этих датчиков может достигать значения 150 метров.

Подберите оптический выключатель:

по параметрам по аналогам по отраслям по маркировке

Магниточувствительные бесконтактные выключатели

Магниточувствительные датчики служат для обнаружения в пространстве намагниченного объекта. Срабатывание датчика происходит при изменении напряженности магнитного поля, вызванного, например, перемещением постоянного магнита, расположенного на подвижной части механизма.

Подберите магниточувствительный выключатель:

по параметрам по аналогам по отраслям по маркировке

Бесконтактные датчики могут быть исполнены в особо прочных корпусах из специальных материалов, согласно стандарту NAMUR, а также с приемкой 5.

Достоинства бесконтактных датчиков (выключателей):

  • частота срабатывания: до 3 кГц, на эффекте Холла до 15 кГц;
  • высокая надежность;
  • однозначная зависимость выходной величины от входной;
  • стабильность характеристик во времени;
  • небольшие размеры и масса;
  • отсутствие обратного воздействия на объект;
  • повышенная герметичность IP 68
  • различные варианты монтажа
  • работа при различных условиях эксплуатации:
    • в общепромышленных условиях
    • в широких температурных диапазонах (от -60C° до +150C°)
    • при высоком давлении (до 500 Атм)
    • в агрессивных средах
    • во взрывоопасных зонах

Виды бесконтактных выключателей

Принципы функционирования чувствительного элемента в бесконтактных моделях могут отличаться в зависимости от рабочих условий и необходимого быстродействия. При этом конструкция устройств всегда включает следующие компоненты:

  • чувствительный элемент;
  • элемент для обработки сигнала;
  • силовой ключ.

Применяются следующие виды датчиков: емкостные, индуктивные, оптические, ультразвуковые. Об особенностях этих устройств пойдет речь ниже.

Емкостные датчики

Функционирование емкостных датчиков основано на взаимодействии с человеческим телом: когда человек поблизости, возникает электрическая емкость, в результате чего запускается задающий время контур мультивибратора. Чем ближе человек к выключателю, тем больше объем емкости и ниже частота, создаваемая мультивибратором. После преодоления частотой минимального порога устройство включается, однако стоит человеку отойти на определенное расстояние, датчик срабатывает на выключение.

Функцию чувствительного элемента в приборе выполняет пластина, наложенная на конденсатор, который, в свою очередь, подключается к мультивибратору. На выходе мультивибратор стыкуется с преобразователем частоты и напряжения, а также компаратором, выступающим в качестве порогового элемента.

Индуктивные датчики

Бесконтактные выключатели этого типа отзываются не на присутствие человека, а на передвижения магнита. В зависимости от исполнения магнитного изделия, датчик изготавливается с металлическим или намагниченным сердечником. Индуктивный датчик создает электрические импульсы разной направленности в зависимости от приближения или отдаления объекта. Сигнал обрабатывается пороговым элементом: после превышения определенного уровня напряжения на обмотке датчика включается триггер, который открывает ключ.

Оптические датчики

Оптические приборы включают в себя инфракрасный светодиод и фототранзисторы. Светодиод работает вне зависимости от помех, создаваемых естественным освещением. Устройство может отражать свет (принцип работы устройства, считывающего штрих-код) или прерывать поток (предмет должен располагаться между датчиком и световым источником).

Ультразвуковые датчики

В ультразвуковых устройствах применяются кварцевые звуковые излучатели. На звук реагирует настроенный на определенную частоту приемник. Ультразвуковые приборы имеют и другое название — датчики движения и объема. При этом в помещении, где отсутствуют движущиеся объекты, период возврата и амплитуда сигнала являются постоянными. Если в помещении появляется движущийся объект, звуковые волны распределяются иначе, что отражается на изменении в сигнале, получаемом датчиком.

Преимущества бесконтактных моделей

Главным преимуществом бесконтактных выключателей является экономия электричества. Электроэнергия не тратится в случае отсутствия людей в помещении. Человеку не нужно принимать участие, чтобы включить или выключить свет. Следовательно, использование таких моделей считается комфортным.

Техническая простота является плюсом стандартных контактных выключателей, но есть некоторые минусы:

  1. Маленький ресурс при применении максимальной нагрузки. Если контакты размыкаются, возникает искра, что вызывает поломку выключателя. При наличии постоянного тока устранить аварию поможет конденсатор, имеющий параллельное подключение к контактам. При наличии в сетях переменного тока понадобится тугоплавкая напайка из вольфрама.
  2. Минусом контактного устройства считается сильная чувствительность к пыли и грязи. Это вызывает нарушение электрической цепи. Далее происходит снижение взаимодействия контактов, а в итоге — перегрев и поломка.

Бесконтактные выключатели отличаются от традиционных моделей высокой надежностью. Работа современных приборов заключается в использовании транзисторных ключей, имеющих незначительное сопротивление. Это способствует проведению значительных токов с отсутствием перегрева.

Огромный выбор дает возможность найти элемент для использования в конкретном случае. Если нужно реализовать сенсорное управление, подойдет емкостный выключатель, а для использования в загрязненных условиях лучше выбрать индуктивный вариант.

Кол-во блоков: 5 | Общее кол-во символов: 8049
Количество использованных доноров: 3
Информация по каждому донору:

Бесконтактные датчики: обзор, принцип действия, назначение. Сенсорный выключатель

Нередко в электронике находит свое применение такой радиоэлемент, как геркон. Его особенность состоит в способности замыкания контактов при облучении магнитным полем. Что это означает? Взяв простой магнит или разместив недалеко от геркона электромагнит, можно легко производить замыкание и размыкание контактов этого радиоэлемента. По своей сути он и является своеобразным бесконтактным датчиком.

Определение понятия

Что же такое бесконтактный датчик? Под ним понимают такой электронный прибор, который регистрирует присутствие определенного объекта в зоне своего действия и срабатывает без каких-либо механических или любых других воздействий.

Бесконтактные датчики применяются в самых различных сферах. Это создание бытовых приборов и системы охраны объектов, промышленные технологии и автомобилестроение. Кстати, в народе данный элемент называют «бесконтактным выключателем».

Преимущества

Среди основных достоинств бесконтактных датчиков выделяют их:

– высокую степень герметичности;

– долговечность и надежность;

– разнообразие вариантов установки;

– отсутствие контакта с объектом и обратного воздействия.

Классификация

Существуют различные типы бесконтактных датчиков. Они классифицируются по принципу действия и бывают:

Рассмотрим каждый из этих видов приборов отдельно.

Емкостные датчики

В основе этих приборов находится измерение электроконденсаторов. В их диэлектрике и находится тот объект, который подлежит регистрации. Назначение бесконтактных датчиков такого типа заключается в работе со множеством приложений. Это, например, распознавание жестов. Емкостными выпускают автомобильные датчики дождя. Такие приборы дистанционно измеряют уровень жидкости в процессе обработки различных материалов и т. д.

Емкостной бесконтактный датчик представляет собой аналоговую систему, работающую на расстоянии до семидесяти сантиметров. В отличие от других типов подобных приборов, он обладает большей точностью и чувствительностью. Ведь изменение в нем емкости происходит всего лишь в несколько пикофарад.

Схема бесконтактного датчика данного типа включает в себя пластины, состоящие из проводящей печатной платы, а также зарядку. В этом случае происходит формирование конденсатора. Причем это будет происходить в любое время либо в проводящем заземленном элементе, либо в каком-то объекте, диэлектрическая проницаемость которого отлична от воздуха. Такой прибор сработает и в случае появления в зоне действия устройства человека или части его тела, которая будет аналогична потенциалу земли. По мере приближения, например, пальца, изменится емкость конденсатора. И даже учитывая то, что система является нелинейной, обнаружить возникший в просматриваемых границах посторонний объект для нее не составит никакого труда.

Схема подключения такого бесконтактного датчика может быть усложнена. В устройстве могут быть задействованы сразу несколько независимых друг от друга элементов в направлениях влево/вправо, а также вниз/вверх. Это позволит расширить возможности прибора.

Оптические датчики

Такие бесконтактные выключатели на сегодняшний день находят свое широкое применение во многих отраслях человеческой деятельности, где работает оборудование, необходимое для обнаружения объектов. При подключении бесконтактного датчика используется кодирование. Это позволяет не допустить ложного срабатывания устройства при постороннем влиянии источников света. Работают подобные датчики и при низких температурах. В этих условиях на них надевают термокожухи.

Что представляют собой оптические бесконтрольные датчики? Это электронная схема, реагирующая на изменение того светового потока, который падает на приемник. Подобный принцип действия позволяет зафиксировать наличие или же отсутствие объекта в той или иной пространственной области.

В конструкции оптических бесконтактных датчиков имеется два основных блока. Один из них – источник излучения, а второй – приемник. Они могут находиться как в одном, так и в различных корпусах.

При рассмотрении принципа действия бесконтактного датчика можно выделить три типа оптических устройств:

  1. Барьерный. Работа оптических выключателей такого типа (Т) осуществляется на прямом луче. При этом приборы состоят из двух отдельных частей – передатчика и приемника, располагающихся соосно друг относительно друга. Тот поток излучения, который испускается излучателем, должен быть направлен точно в приемник. При прерывании луча объектом выключатель срабатывает. Такие датчики имеют хорошую помехозащищенность. Кроме этого, им не страшны ни капли дождя, ни пыль и т. д.
  2. Диффузный. Работа оптических выключателей типа D основана на использовании отраженного от объекта луча. Приемник и передатчик такого устройства располагают в одном корпусе. Излучателем направляется поток на объект. Луч, отражаясь от его поверхности, распределяется в различных направлениях. При этом часть потока возвращается назад, где и улавливается приемником. В результате выключатель срабатывает.
  3. Рефлекторный. Такие оптические бесконтактные датчики относятся к типу R. В них используется луч, отраженный от рефлектора. Приемник и излучатель такого устройства также располагаются в одном корпусе. При попадании на рефлектор луч отражается, оказывается в зоне приемника, в результате чего и происходит срабатывание устройства. Такие приборы действуют при расстоянии до объекта не более 10 метров. Возможно, их применение для фиксации полупрозрачных предметов.

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих – катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Читайте также:  Зачем и как правильно произвести заземление ванны в квартире

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один – непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса.

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Бесконтактный датчик температуры магниточувствительного типа применяют:

– на химических и металлургических производствах;

– в районах Крайнего Севера;

– на подвижном составе;

– в холодильных установках;

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

– суммарного излучения, измеряющими полную тепловую энергию тела;

– частичного излучения, измеряющие энергию ограниченного приемником участка;

– спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

– включать и выключать свет;

– контролировать работу отопительных приборов, сообщая об изменениях температуры;

– открывать и закрывать жалюзи;

– включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

Промышленные концевые выключатели: описание и применение

Концевой выключатель является электрическим устройством, которое применяется в управленческих системах как датчик, формирующий сигнал в момент появления механического контакта подвижных механизмов. Какое у него устройство, каков его принцип работы и правила подключения? Об этом и другом далее.

Принцип работы

Концевой выключатель или концевик является устройством, которое подает команду или лично размыкает/замыкает электроцепь исполнительного механизма. Сигнал для командной подачи — внешний вид воздействия подвижной детали на выключатель. Он призван автоматизировать управление и освободить людей от того, чтобы они выполняли однотипные и примитивные действия. В этом заключается цель его работы.

Внешне он является самостоятельным компактным прибором, устанавливаемым в управляемом механизме. Это не считается начальной или конечной точкой пути. Для того чтобы воздействовать на концевик, могут быть применены детали, которые располагаются на любом месте в шкафу. Нередко обеспечение движения происходит одним и тем же выключателем, который контактирует с подвижным узлом.

Обратите внимание! Концевик подает или отключает напряжение по положению. Он может оказывать как прямое механическое действие или косвенное действие. Так, он может создавать толчок с касанием или нажатием или же ультразвук с инфракрасным излучением.

Типы и применение

Концевик бывает защитным или функциональным. Первый используется, для того чтобы активировать движение вниз, а второй — регулярно включать и отключать свет или подобные предметы. Обе разновидности активно применяются в строительстве, машиностроении, металлургии и производственной автоматизированной сфере.

Также стоит указать, что он бывает роликовым, рычаговым, поплавковым и кнопочным. Есть микровыключатели, сфера применения которых это электроника и бытовые приборы.

Механические

Механические или контактные проводники — те, которые работают в момент непосредственного воздействия на штырь с кнопкой, колесиком или рычажком. Подает сигнал управления с предупреждением. Серьезным недостатком каждой такой разновидности является подгорание с контактным залипанием во время многократного включения и выключения.

Механический тип бывает кнопочным, роликовым и рычажным. Применяется в производственном и металлургическом цеху, машинной и строительной сфере. Оснащен резиновым уплотнителем и замыкающими/размыкающими контактами.

Кнопочные

Кнопочные проводники используются, для того чтобы включать освещение или другие электротехнические приборы воздействием на кнопку. Воздействие может быть как нажатием кнопки, так и нажатием удлиненного штока. Установка их занимает непродолжительное время.

Роликовые

Выключатели, являющиеся электромеханическими приборами, созданные для управления объектами. Широко распространены в промышленной и бытовой сфере. Подобные устройства работают не благодаря электроимпульсу, а благодаря механическому воздействию на ролик. В момент усилия, замыкается или размыкается контакт, и подается сигнал управляющего или сигнализирующего типа. Применяются подобные изделия в металлургии, строительстве и машиностроении.

Обратите внимание! Чаще всего, они снабжаются замыкающими и размыкающимися контактами, резиновыми уплотнителями.

Рычажные

Концевики, работающие благодаря исполнительному механизму или двери. Имеют схожий принцип работы, как у кнопочных моделей. Главным отличием является наличие рычажка, соединяемого с подвижной частью контактов. Стоит указать, что подобным образом работают поплавковые и ползунковые модели.

Бесконтактные

Концевики, срабатывающие в момент приближения какого-либо предмета в определенной зоне. Созданы в противовес механическому типу и относится к совершенным моделям. Функционируют благодаря транзисторным ключам, обладающим малым сопротивлением. Бесконтактные модели бывают емкостными, индуктивными, оптическими и ультразвуковыми.

Емкостные

Концевики, которые взаимодействуют с людьми. В момент приближения человека, создается электрическая емкость, благодаря которой действует мультивибратор. Чем ближе человек, тем больше емкость и меньше импульсная частота. Такой элемент имеет большую чувствительность.

Обратите внимание! Основная функция лежит на пластине, плотно присоединенной к части конденсатора.

Индуктивные

Электронные бесконтактные выключатели, которые реагируют на момент передвижения магнита. В зависимости от оснащения металлического или немагнитного сердечника в датчике, вырабатываются электроимпульсы, благодаря которым закрывается или открывается ключ.

Оптические

Концевики, оснащенные инфракрасным светодиодом и особым транзистором, которые улавливают сигнал. Фототранзистор работает, вне зависимости от того, какое освещение. В момент прерывания светодиодного луча фотоэлемент закрывается. Так выключается исполнительный механизм, где он подключается.

Концевые выключатели, оснащенные при помощи инфракрасного светодиода и специального транзистора, которые улавливают фототранзистор.

Читайте также:  Бесперебойники для компьютера: ТОП-12 лучших ИБП для компа

Ультразвуковые

Концевики, оснащенные кварцевыми звуковыми излучающими элементами. Также применяются датчики движения с объемом. Изменяется амплитуда звука, когда в радиусе работы появляются кварцевые звукоэлементы.

Магнитные

Проводники, активирующиеся в момент приближения определенной пространственной точки. Настроены на магнит, который входит в конструкцию движущегося механизма. Имеют один или несколько ферромагнетичных контактов. При приближении магнита, контакты замыкаются, и подается сигнал об этом в схему управления. Основное преимущество подобного устройства в полном отсутствии механического действия и заметном повышении срока службы. Создается каждый магнитный концевик в корпусе стекла или пластика.

Обратите внимание! Обладает миниатюрными габаритами.

Автомобильные

Концевики, применяемые в сигнализации с освещением. Относятся к механической модели, поскольку обладает тем же принципом работы. По конструкции имеют один выход с подключаемым положительным потенциалом и отрицательную клемму — корпус, который зажимается к металлическому кузову. При этом необходимо, чтобы концевики были защищены от краски.

Шпиндельные

Концевики, ограничивающие механизм движения, использующийся как путевой выключатель. Могут быть применены там, где есть вращение вала. Благодаря вращающимся механизмам, переключается контактная группа ограничителя входа, вращающегося вала или путевого выключателя циклического управления.

Пневматические

Проводники, реагирующие на системное давление, которые останавливает подачу воздуха с каким-либо газом. Устройства, останавливающие сжатый воздух или другой газ благодаря нажатию управляющей кнопки или рычага. При этом есть разновидности, срабатывающие в момент достижения конкретного системного давления.

Правила подключения

Несмотря на достаточно простую конструкцию концевых выключателей, они используются в электрооборудовании, где есть сложные электрические цепи. В итоге, подключать их должны специалисты, умеющие работать с принципиальным схемами подключения концевых выключателей. Подключение датчика происходит двумя проводами, красным и черным. Первый находится под напряжением, второй без него. Установлены они в цепи так, как указано на схеме.

При срабатывании прибора создается щелчок. Индикаторный вид выключателя подключается так же, как и обычный механический. Есть еще третий провод зеленого цвета. О том, что сработал выключатель, будет сигнализировать светодиод со щелчком.

Обратите внимание! Сбой работы может происходит из-за запыленности с солнечным светом. Если сработает оптическая пара, то включится светоизлучающий диод.

Маркировка концевых выключателей

Каждое коммутирующее устройство обладает своей маркировкой. Если его расшифровать, то можно заполучить всю информацию о том, как работает конкретный концевой выключатель. Первые две цифры выключателя это буквенное обозначение, вторые две — номер серии, следующая — исполнение.

Следующие две цифры являются контактами, последующие — исполнением рабочих элементов и степенью защиты. Последние две цифры считаются климатическим исполнением и категорией применения. Как правило, кроме маркировки, каждое изделие имеет указание гарантии качества и производителя. Нередко эти данные прописываются рядом с маркировкой.

В целом, концевой выключатель является электротехническим прибором, который предназначен, чтобы размыкать и замыкать рабочую электроцепь. Бывает механическим, кнопочным, роликовым, рычажным, бесконтактным, емкостным, индуктивным, оптическим, ультразвуковым, магнитным, автомобильным, шпиндельным и пневматическим. Подключается по специальным электросхемам, основываясь на имеющихся технических особенностях. Имеет специальную маркировку, в зависимости от вида и применения.



СИСТЕМА ОБОЗНАЧЕНИЯ ВЫКЛЮЧАТЕЛЕЙ

обозначение выключателя (датчика) по каталогу

ВБ2.18М.75.5.7.4.К

номер позиции и расшифровка

1.ВЫКЛЮЧАТЕЛЬВБ – Выключатель бесконтактный
ДБ – Датчик бесконтактный2.ПРИНЦИП ДЕЙСТВИЯ1 – Емкостный
2 – Индуктивный
3 – Оптический
4 – Ультразвуковой
5 – Магниточувствительный3.ФУНКЦИОНАЛЬНОЕ НАЗНАЧЕНИЕДанная позиция может отсутствовать.

А – для эксплуатации в составе бортовых грузоподъемных сооружений
В – взрывозащищенный (NAMUR)
П – выполняемые функции программируются потребителем
Ч – пороговой частоты

4.ВИД КОРПУСА06, 08, 12, 18, 30, 55 – цилиндрический корпус, указан диаметр в мм
31 . 61 – корпус специальной формы, указан код исполнения5.М – корпус с наружной метрической резьбойДанная позиция может отсутствовать.6.ДЛИНА цилиндрического корпуса , в ммхх – указывается для корпуса специальной формы
7.только ДЛЯ ОПТИЧЕСКИХ И УЛЬТРАЗВУКОВЫХ выключателейT – Излучатель
R – Приемник
TR – Излучатель и приемник в одном корпусе
TRP – Излучатель и приемник в одном корпусе, использующие поляризованный свет
TRL – Излучатель и приемник в одном корпусе, использующие лазерное излучение8.РАССТОЯНИЕ СРАБАТЫВАНИЯ , в мм9.СХЕМА ПОДКЛЮЧЕНИЯ

1П – Трехпроводная, “размыкающий контакт”, PNP-транзистор, общий минус с возможностью перепрограммирования на “замыкающий контакт” – схема 3

1 – Трехпроводная, “замыкающий контакт”, PNP-транзистор, общий минус

2 – Трехпроводная, “замыкающий контакт”, NPN-транзистор, общий плюс

2П – Трехпроводная, “замыкающий контакт”, NPN-транзистор, общий плюс с возможностью перепрограммирования на “размыкающий контакт” – схема 4

3 – Трехпроводная, “размыкающий контакт”, PNP-транзистор, общий минус

4 – Трехпроводная, “размыкающий контакт”, NPN-транзистор, общий плюс

5 – Четырехпроводная, “переключающий контакт”, PNP-транзистор, общий минус

6 – Четырехпроводная, “переключающий контакт”, NPN-транзистор, общий плюс

7 – Двухпроводная, “замыкающий контакт”, заземляющий проводник

8 – Двухпроводная, “размыкающий контакт”, заземляющий проводник

9 – Аналоговый выход

10 – Контакты реле замыкающие

11 – Контакты реле размыкающие

12 – Контакты реле переключающие

13 – Двухпроводная, “NAMUR”

10.НАПРЯЖЕНИЕ ПИТАНИЯ, рабочий диапазон1 – Постоянное напряжение (10 . 30) В
2 – Переменное напряжение (35 . 250) В
3 – Постоянное напряжение (24 ± 20 %) В
4 – Постоянное или переменное напряжение -(30 . 250) В /

(24 . 250) В, (45 . 65) Гц
5 – Прочее11.СПОСОБ ПОДКЛЮЧЕНИЯК – Кабель, стандартная длина 2,0 м
Z – Кабель со штуцером для крепления защитной трубки
В – Винтовой зажим (клеммная коробка)
Т – Клеммная коробка Т-образная
С3 – 3-х контактный разъем для подключения к сети постоянного тока, наружная резьба М8х1
С4 – 4-х контактный разъем для подключения к сети постоянного тока, наружная резьба М12х1
С27 – 3-х контактный разъем, для подключения к сети переменного или постояного тока (АС/DC).12.МОДИФИКАЦИЯ БАЗОВОГО ИЗДЕЛИЯДанная позиция может отсутствовать.

1 – С повышенным значением тока нагрузки
2 – Теплоустойчивое исполнение
3 – Холодоустойчивое исполнение
4 – С повышенным быстродействием

Бесконтактные путевые выключатели

Бесконтактные путевые выключатели (преобразователи пути, работающие без механического воздействия со стороны движущегося упора) применяются в схемах управления электроприводами станков, механизмов и машин. Бесконтактные выключатели предназначены для коммутации цепей управления посредством электромагнитных реле или бесконтактных логических элементов, которая осуществляется под воздействием управляющего элемента.

Классификация бесконтактных путевых выключателей

Бесконтактные путевые выключатели могут быть классифицированы по: способу воздействия на чувствительный элемент, физическому принципу действия преобразователя, конструктивному исполнению, классу точности, степени защиты.

По способу воздействия на чувствительный элемент бесконтактные путевые выключатели могут быть разделены на выключатели механического и параметрического действия.

В выключателях первого вида управляющий элемент непосредственно механически воздействует на первичный привод бесконтактного путевого выключателя, который бесконтактно взаимодействует с чувствительным элементом. В выключателях второго вида в зависимости от положения управляющего элемента, механически не связанного с бесконтактным путевым выключателем, изменяется какой-либо физический параметр преобразователя. При определенном значении этого параметра изменяется состояние релейного элемента.

Классификация бесконтактных путевых выключателей по физическому принципу действия преобразователя включает в себя следующие виды:

Индуктивные выключатели , построенные на изменении индуктивности, взаимоиндуктивности, а также индукционные выключатели.

В настоящее время большинство серийно выпускающихся промышленностью бесконтактных путевых выключателей — это индуктивные аппараты.

В свою очередь преобразователи индуктивных бесконтактных путевых выключателей могут быть построены по следующим схемам: резонансной, автогенераторной, дифференциальной, мостовой, непосредственного преобразования.

Магнитоиндуктивные выключатели , которые построены на следующих принципах: эффекте Холла, магниторезисторном, магнитодиодном, магнитотиристорном, герконном.

Емкостные выключатели : с изменяющейся площадью пластин, с изменяющимся зазором между пластинами, с изменяющейся диэлектрической проницаемостью зазора между пластинами.

Фотоэлектронные выключатели с элементами: фотодиодными, фототранзисторными, фоторезисторными, фототиристорными.

Фотоэлектрические выключатели и примыкающие к ним лучевые выключатели, в которых наряду с лучами видимого света могут использоваться лучи другой физической природы, например радиоактивное излучение.

По конструктивному исполнению бесконтактные путевые выключатели подразделяются на: щелевые, кольцевые (полукольцевые), плоскостные, торцевые, выключатели с механическим приводом, многоэлементные выключатели.

Разделение бесконтактных путевых выключателей торцевого и плоскостного исполнений носит в какой-то мере условный характер, поскольку движение управляющего элемента относительно чувствительной поверхности может для некоторых видов бесконтактных путевых выключталелей осуществляться как в параллельной, так и в перпендикулярной плоскостях. В этом случае за основу может быть принято его преимущественное использование.

По классу точности (величине основной погрешности) бесконтактные путевые выключатели делятся на выключатели низкой (примерно ±0,5 мм и более), средней [примерно ±(0,05—0,5) мм], повышенной [примерно ±(0,005—0,05) мм] и высокой (примерно ±0,005 мм и менее) точности.

Бесконтактные путевые выключатели могут обладать различной степенью защиты от попадания посторонних твердых тел и проникновения воды внутрь аппарата. Характеристики степени защиты бесконтактных путевых выключателей и связанная со степенью защиты классификация соответствуют принятым в нашей стране и за рубежом характеристикам и классификации для электрического оборудования и электрических аппаратов напряжением до 1000 В.

Технические характеристики бесконтактных путевых выключателей

К техническим характеристикам бесконтактных путевых выключателей относятся точностные (метрологические) характеристики, быстродействие, электрические характеристики, габаритные и установочные размеры и масса, номинальные и допустимые условия работы, показатели надежности, стоимость и пр.

Одна из основных характеристик бесконтактных путевых выключателей, непосредственно влияющая на его конструкцию и ряд других технических характеристик, определяется геометрическим расположением управляющего элемента относительно чувствительной поверхности во время работы . Для плоскостных бесконтактных путевых выключателей в качестве основной характеристики принимается рабочий зазор — расстояние между чувствительной поверхностью выключателя и управляющим элементом, при котором происходит работа выключателя. Основная характеристика торцевого выключателя — максимальное расстояние воздействия, т. е. максимальное расстояние между чувствительной поверхностью выключателя и управляющим элементом, при котором возможно изменение его коммутационного состояния. Основной характеристикой щелевогои кольцевого выключателей является ширина щели и внутренний диаметр кольца этих выключателей соответственно.

К точностным характеристикам бесконтактных путевых выключателей относятся основная погрешность, дополнительные погрешности от изменения окружающей температуры и изменения напряжения питания, а также максимальная суммарная погрешность. К точностным характеристикам бесконтактных путевых выключателей относятся также дифференциал хода т. е. разность между координатой точки срабатывания бесконтактного путевого выключателя и координатой точки его отключения при перемещении управляющего элемента в обратном направлении.

Быстродействие (время срабатывания) бесконтактного путевого выключателя — это время между моментом установления координаты срабатывания и моментом достижения установившегося значения напряжения на выходе бесконтактного путевого выключателя. Зная величину быстродействия бесконтактного путевого выключателя, можно определить динамические погрешности работы бесконтактных путевых выключателей при изменении скорости перемещения управляющего элемента.

Электрические характеристики бесконтактных путевых выключателей включают в себя требуемые параметры источника питания (питающей сети) и нагрузочные характеристики. К параметрам питающей сети относятся: род тока (постоянный, переменный), напряжение питания и его допустимые отклонения, уровень пульсаций, потребляемая бесконтактных путевым выключателем мощность или потребляемый ток, частота сети (для переменного тока). Нагрузочные характеристики бесконтактных путевых выключателей — это вид нагрузки (реле, микросхема или др.). выходное напряжение, мощность или ток, потребляемый нагрузкой.

К показателям надежности и долговечности бесконтактных путевых выключателей в первую очередь относятся: вероятность безотказной работы в течение определенного срока эксплуатации или на определенное число срабатываний и срок службы бесконтактного путевого выключателя.

К важнейшим параметрам следует отнести также габаритные и установочные размеры бесконтактных путевых выключателей.

Требования к бесконтактным путевым выключателям

Одним из важнейших требований, предъявляемых к путевым выключателям, является требование высокой надежности их работы. В сравнении с остальным электрооборудованием, в том числе и электронным, путевые выключатели работают в наиболее тяжелых условиях, поскольку располагаются непосредственно в рабочих зонах технологических машин, где возможен широкий диапазон температур, вибрации и удары, сильные электромагнитные поля, загрязнения стружкой и различными жидкостями.

Читайте также:  Стриппер для снятия изоляции с проводов: как правильно выбрать клещи для зачистки

К путевым выключателям могут быть предъявлены требования высокой частоты срабатывания при больших скоростях перемещения управляющих органов.

Технические данные контактных путевых выключателей не всегда позволяют удовлетворить предъявленным требованиям. Особенно это характерно для автоматизированного технологического оборудования со сложным электрооборудованием, содержащим большое число контактных путевых выключателей, например автоматические станочные линии, подвесные толкающие конвейеры и другие разветвленные транспортные системы, литейное и металлургическое оборудование и т. д. Это также характерно для оборудования, работающего в напряженном режиме, с большим числом срабатываний в единицу времени, например для кузнечно-прессового оборудования.

Во многих из приведенных случаев при использовании контактных путевых выключателей невозможно обеспечить приемлемую надежность работы автоматизированного технологического оборудования и, кроме того, эти выключатели необходимо периодически заменять на работающем оборудовании из-за их малого срока службы по полному числу срабатываний.

Как правило, бесконтактные путевые выключатели обладают высокой надежностью, способны работать с большой частотой срабатываний и имеют большой срок службы по полному числу срабатываний. Важным преимуществом бесконтакных путевых выключателей является то, что их надежность (вероятность безотказной работы за какой-либо определенный период) практически не зависит от частоты срабатываний.

Повышению надежности оборудования при использовании бесконтактных путевых выключателей способствует также и то, что бесконтактные путевые выключатели могут включаться только тогда, когда в этом есть необходимость. В случае же использования контактных путевых выключателей переключение контактов происходит при каждом нажатии кулачка вне зависимости от того, включены эти контакты в электрическую цепь или нет.

Определенные требования к бесконтактным путевым выключателям обусловлены также условиями эксплуатации.

Основными учитываемыми внешними условиями, как правило, являются изменяющиеся напряжение питания и температура окружающей среды. В заданных пределах изменения внешних условий бесконтактные путевые выключатели должны сохранять работоспособность и требуемую точность. На работу бесконтактных путевых выключателей не должна оказывать существенного влияния влажность окружающего воздуха, а также высота над уровнем моря в пределах, принятых для путевых выключателей.

Требования, предъявляемые обычно к бесконтактным путевым выключателям, — возможность занимать любое рабочее положение в пространстве и отсутствие влияния материала основания, на котором они устанавливаются, и соприкасающихся с корпусом бесконтактного путевого выключателя металлических тел. На работоспособности бесконтактных путевых выключателей не должны сказываться вибрации и ударные сотрясения, а также попадание масла, эмульсии, воды, пыли.

Наибольшая частота срабатываний бесконтактных путевых выключателей при использовании в качестве нагрузки электромагнитного реле может практически достигать 120 срабатываний в минуту. Если в качестве нагрузки бесконтактных путевых выключателей используются электронные устройства, то частота срабатываний системы может быть значительно выше.

Генераторные бесконтактные торцевые выключатели

Принцип действия генераторных бесконтактных путевых выключателей основан на изменении при внешнем воздействии параметров колебательного контура генератора. Таким изменяющимся параметром, преобразующим перемещение управляющего элемента в изменяющийся электрический сигнал, является обычно индуктивность или емкость колебательного контура или взаимоиндуктивность между катушками контура. В индуктивных генераторных бесконтактных путевых выключателей торцевого типа управляющий элемент, представляющий собою проводящую пластину, вносит при приближении возмущение в высокочастотное электромагнитное поле, создаваемое катушкой индуктивности контура автогенератора.

При этом в управляющем элементе наводятся вихревые токи, создающие собственное электромагнитное поле. Электромагнитное поле вихревых токов оказывает обратное воздействие на катушку преобразователя, вызывая в ней изменения активного и реактивного сопротивлений и, следовательно, изменение сигнала на выходе автогенератора по частоте и по амплитуде от начальных значений, соответствующих значительному удалению управляющего элемента, до значений этих параметров, соответствующих такому положению управляющего элемента, при котором происходит скачкообразное изменение состояния , порогового устройства. Это изменение выходного сигнала автогенератора регистрируется, в конечном счете, исполнительным элементом.

Выходным сигналом автогенератора является колебание напряжения частотой в несколько сотен килогерц. На выход порогового устройства этот сигнал должен поступить однополярным. Поэтому между генератором и пороговым устройством включается выпрямитель.

Бесконтактные переключатели щелевого типа БВК-24

Широкое распространение получили бесконтактные переключатели щелевого типа с транзисторными усилителями, работающими в генераторном режиме. На рис. 1, а показан общий вид переключателя типа БВК-24. Его магнитопровод, размещенный в корпусе 4, состоит из двух ферритовых сердечников 1 и 2 с воздушным зазором шириной 5-6 мм между ними. В сердечнике 1 размещается первичная обмотка wк и обмотка положительной обратной связи wп.с, в сердечнике 2 – обмотка отрицательной обратной связи wо.с. Такой магнитопровод исключает влияние внешних магнитных полей. Катушки обратной связи включены последовательно – встречно. В качестве переключающего элемента используется алюминиевый лепесток (пластинка) 3 толщиной до 3 мм, который может перемещаться в щели (в воздушном зазоре) магнитной системы датчика.

Бесконтактный путевой переключатель БВК-24: а – общий вид; б – схема электрическая принципиальная

Если лепесток находится вне сердечника, то разность напряжений, индуктируемых в обмотках wп.с и wо.с, будет положительной, транзистор VT1 закрыт и генерация незатухающих колебаний в контуре wк – С3 (рис. 1, б) не возникает. При введении лепестка в щель датчика связь между катушками wк и wо.с ослабляется (поэтому лепесток еще называют экраном), на базу транзистора VT1 подается отрицательное напряжение и он открывается. В контуре wк – С3 возникает генерация и появляется переменный ток, который индуктирует ЭДС в катушке wп.с в цепи базы транзистора. В цепи базы транзистора VT1 происходит детектирование переменной составляющей тока базы. Транзистор открывается, вызывая срабатывание реле К.

Для стабилизации работы транзистора при колебаниях температуры и напряжения служит нелинейный делитель напряжения, состоящий из линейного элемента – R1, полупроводникового терморезистора R2 и диода VD2.

Погрешность срабатывания составляет 1-1,3 мм. Напряжение питания переключателя БВК–24 составляет 24 В.

Схема включения бесконтактного выключателя БВК

Схема последовательного включения двух бесконтактных выключателей БВК

Схема параллельного включения двух бесконтактных выключателей БВК

Бесконтакные выключатели КВД

Бесконтактные конечные выключатели типа КВД предназначены для коммутации электрических цепей управления и сигнализации при автоматизации различных систем. Электрическая принципиальная схема включает в себя генератор и триггер на транзисторах. При введении в рабочий зазор металлической пластины происходит уменьшение коэффициента обратной связи, вызывающее срыв генерации, триггер опрокидывается, и нормально закрытый выходной транзистор открывается, что вызывает срабатывание реле или логического элемента. Напряжение питания – 12 или 24 В

Переключатели бесконтактные торцевые БТБ

Переключатели БТБ предназначены для коммутации цепей управления посредством реле или через согласующие элементы бесконтактных логических элементов. Переключатели изменяют коммутационное состояние (срабатывают) при приближении к чувствительному элементу управляющего элемента из конструкционной стали. Переключатели работают по принципу управляемого генератора, коммутация происходит при приближении к чувствительному элементу контролируемой детали или управляющего элемента из конструкционной стали.

Все переключатели снабжены схемами защиты от неправильной полярности питающего напряжения и от перенапряжений при отключении индуктивной нагрузки. Переключатели БТП 103-24, БТП 211-24-01 и БТП 301-24 помимо указанных выше схем защиты снабжены схемой защиты от перегрузок и коротких замыканий в цепи нагрузки. Напряжение питания выключателей БТБ – 24 В.

Разновидности и принцип работы бесконтактных выключателей света

Бесконтактный выключатель используется для автоматического включения и выключения света. Встроенные инфракрасные датчики обеспечивают включение освещения в момент приближения людей. Когда в помещении никого нет, система отключает осветительные приборы. Это способствует снижению затрат на электроэнергию и увеличению ресурса ламп.

Например, бесконтактные выключатели применяют для освещения в коридорах и на лестничных площадках. В таких случаях свет включается, когда человек входит. При отсутствии движения, если на площадке никого нет, свет выключается.

К составным частям бесконтактного выключателя относятся:

  • чувствительный элемент;
  • схема обработки сигнала;
  • силовой ключ.

к содержанию ↑

Разновидности

Существует несколько типов датчиков, входящих в состав бесконтактных моделей:

  • емкостные;
  • индуктивные;
  • оптические;
  • ультразвуковые.

Емкостные датчики

Суть работы емкостного выключателя света заключается в том, что электрическая емкость образуется при приближении людей. Это позволяет запустить контур мультивибратора, задающего время.

Объем емкости возрастает, а частота снижается, если приблизиться к прибору. Минимальная частота датчика вызывает срабатывание устройства на включение. Если человек отдаляется от помещения, происходит отключение. Чувствительный элемент в устройстве работает за счет пластины, находящейся на конденсаторе, подключенном к мультивибратору.

Иногда емкостные бесконтактные модели похожи на обычные настенные выключатели, но без использования клавиш. Очень удобно иметь подобного вида устройство на кухне, чтобы не прикасаться к нему своими руками.

Индуктивные датчики

Работа бесконтактных моделей такого типа обусловлена передвижением магнита. Датчики содержат металлический или намагниченный сердечник. Электрические импульсы создаются, если объект находится близко или далеко. В момент, когда превышено напряжение порогового элемента, обрабатывается сигнал. Далее включается триггер, который открывает ключ.

Например, человек, который входит в помещение, имеет связку ключей, что вызовет реакцию датчика на металл. Бесконтактные модели с индуктивным датчиком отличаются от емкостных вариантов отсутствием чувствительности к влажному воздуху или смене плотности.

При установке устройств стоит учитывать, что входящие люди должны иметь металлический предмет. Поэтому, к примеру, для бани такой выключатель не подойдет.

Оптические датчики

В состав оптических приборов входят фототранзисторы и светодиод. Помехи от освещения не мешают функционированию светодиодного элемента. Суть работы устройства — прерывать либо отражать поток света. Чтобы осветить небольшие участки помещения, используются светодиодные ленты.

Ультразвуковые датчики

Данные устройства работают благодаря кварцевым звуковым излучателям. Для этого необходимо настроить на нужную частоту приемник, который будет давать реакцию на звук. Ультразвуковые модели иногда называют датчиками движения и объема. При возникновении движения, вызванного присутствием людей, распределение звуковой волны меняется, датчик получает измененный сигнал.

Концевые выключатели

В основном бесконтактные выключатели используются в промышленности. Емкостные выключатели являются основой различных уровневых датчиков, находящихся в дозаторах. Это обеспечивает контроль над определенными материалами, например, при наполнении емкости жидкостью концевой выключатель срабатывает, чтобы вовремя прекратить поступление вещества.

Как это работает

Бесконтактные модели имеют чувствительный элемент, принцип действия которого зависит от условий функционирования и нужного быстродействия. Так как индуктивные выключатели реагируют на нагрузку и передвижение, их используют в системах безопасности. Эти приборы нечувствительны к загрязнениям, поэтому их применяют в различных технологических процессах.

Концевые бесконтактные выключатели востребованы на таком производстве, где нужна особая точность. Оптические сенсоры применяют в станкостроении, а также для регулировки движения деталей, автоматических ворот.

Преимущества бесконтактных моделей

Главным преимуществом бесконтактных выключателей является экономия электричества. Электроэнергия не тратится в случае отсутствия людей в помещении. Человеку не нужно принимать участие, чтобы включить или выключить свет. Следовательно, использование таких моделей считается комфортным.

Техническая простота является плюсом стандартных контактных выключателей, но есть некоторые минусы:

  1. Маленький ресурс при применении максимальной нагрузки. Если контакты размыкаются, возникает искра, что вызывает поломку выключателя. При наличии постоянного тока устранить аварию поможет конденсатор, имеющий параллельное подключение к контактам. При наличии в сетях переменного тока понадобится тугоплавкая напайка из вольфрама.
  2. Минусом контактного устройства считается сильная чувствительность к пыли и грязи. Это вызывает нарушение электрической цепи. Далее происходит снижение взаимодействия контактов, а в итоге — перегрев и поломка.

Бесконтактные выключатели отличаются от традиционных моделей высокой надежностью. Работа современных приборов заключается в использовании транзисторных ключей, имеющих незначительное сопротивление. Это способствует проведению значительных токов с отсутствием перегрева.

Огромный выбор дает возможность найти элемент для использования в конкретном случае. Если нужно реализовать сенсорное управление, подойдет емкостный выключатель, а для использования в загрязненных условиях лучше выбрать индуктивный вариант.

Ссылка на основную публикацию