Аккумуляторы для солнечных батарей: гелевые, свинцово-кислотные и др

Гелевые аккумуляторы для домашних солнечных электростанций

Когда заходит речь о строительстве загородного дома, дачи, то неизбежно возникает вопрос о том, как обеспечить будущее жилище электричеством, водой, теплом. Хорошо, если все коммуникации рядом и к ним можно подключиться без проблем. Но, если нет возможности подключиться к магистральной электросети, будущие домовладельцы устанавливают в своих домах солнечные электростанции.

Конфигурация этих индивидуальных электростанций везде одинакова – солнечные панели, аккумуляторы, контроллер заряда аккумуляторов, инвертор. Разница только в мощности и, соответственно, в комплектации. При выборе комплектующих узлов особое внимание следует уделить аккумуляторным батареям. Если солнечные панели могут служить десятилетиями, то этого не скажешь об аккумуляторах.

Свинцово-кислотные батареи, которые ранее повсеместно применялись в индивидуальных гелиевых электростанциях, имеют средний срок службы ‒ около двух лет. Кроме того, что эти батареи требуют постоянного обслуживания, после истечения этого срока их нужно менять на новые. Обслуживание свинцово-кислотных батарей требует определенных навыков, так как при определенных обстоятельствах в процессе заряда возникает такое нежелательное явление, как «кипение».

При этом явлении сильно расходуется вода, плотность электролита резко возрастает и возникает риск взрыва выделяющихся при этом водорода и кислорода. При доливке дистиллированной воды в банки аккумулятора нужно быть предельно осторожным, так как вода, попадая в концентрированную серную кислоту, мгновенно закипает, разбрызгивая при этом кислотные капли.

От всех этих недостатков избавлены гелевые аккумуляторы. Для солнечных батарей, для домашней солнечной электростанции эти аккумуляторы подходят идеально. Они не нуждаются в обслуживании, не боятся глубокого разряда. Гелевые аккумуляторы начали применять сравнительно недавно, но благодаря своим особенностям они довольно быстро начали теснить традиционные свинцово-кислотные. Их сейчас применяют не только для автомобилей. Их устанавливают в катерах, в дорожно-строительных машинах, в телефонных подстанциях, где они обеспечивают бесперебойное электропитание аппаратуры. А в последнее время эти батареи начали активно применять в качестве одного из основных узлов домашней солнечной электростанции.

Чем же так привлекательны гелевые батареи? Их главным отличием от свинцово-кислотных является электролит. В традиционных аккумуляторах пространство между положительными и отрицательными пластинами заполняется водным раствором серной кислоты. Гелевый аккумулятор потому так и называется, что у него пространство между пластинами заполнено пористым материалом – гелем. В процессе эксплуатации, во время разрядки аккумулятора гель затвердевает, препятствуя тому, чтобы водород и кислород, образовавшиеся в результате химических реакций, улетучивались в атмосферу. Вода, которая получается при взаимодействии этих двух газов, поглощается гелем. Эта особенность гелевого аккумулятора делает его абсолютно безопасным с точки зрения экологии.


Устройство гелевого аккумулятора

Для улучшения эксплуатационных характеристик гелевых аккумуляторов пластины изготавливаются из очищенного свинца (количество примесей не превышает 0.2%). Эти армированные пластины делаются более толстыми, чем в свинцово-кислотных аккумуляторах. Благодаря этой особенности реакция сульфитации не оказывает какого-либо отрицательного влияния на работоспособность пластин, при этом гелевый аккумулятор, в отличие от традиционного, способен выдержать глубокий разряд.

Кроме того, эти аккумуляторы значительно долговечнее, чем обычные. Их срок службы достигает семи лет, а у некоторых моделей может достигать 12 лет. При этом они способны выдержать до 1500 циклов. Из этих полутора тысяч циклов большая часть (примерно 800 циклов) происходит без потери энергоемкости.

Эти аккумуляторы абсолютно необслуживаемые. Они выпускаются в герметичном корпусе и могут эксплуатироваться в любом положении. Гель, в котором находятся свинцовые пластины, препятствует образованию сульфата свинца, представляющего собой вредное химическое соединение.

Гелеобразный электролит находится в герметичном корпусе и вытечь из него не может физически. Но даже в случае, если корпус гелевого аккумулятора будет поврежден механически и даст трещину, из которой гель сможет просочиться наружу, опасности это никакой не представляет, в отличие от просачивания водного раствора серной кислоты. В течение всего времени эксплуатации гелевого аккумулятора выделяемые газы поглощаются электролитом. Может случиться так, что при определенных условиях в корпусе аккумулятора скопится избыточное количество газов. Для их выпуска в корпусе предусмотрены специальные клапаны.

Изготовитель выпускает свои изделия полностью заряженными, готовыми к немедленной эксплуатации. Между приобретением аккумулятора и началом его эксплуатации может пройти некоторое время. В принципе, для гелевых аккумуляторов, если они хранятся в нормальных условиях, ничего страшного не произойдет. Они могут храниться длительное время, практически не теряя своих качеств. Но тем не менее, если период хранения достаточно большой, следует перед пуском в эксплуатацию произвести подзарядку.

Если аккумулятор хранился без эксплуатации менее 6 месяцев, то подзарядку производят постоянным током 0.1 СА в течение 4 – 6 часов или же постоянным напряжением 2.4 вольта на элемент в течение 15 – 20 часов. Если же срок хранения превысил шесть месяцев, то время подзарядки увеличивается до 8 – 10 часов постоянным током 0.1 СА или до 20 – 24 часов постоянным напряжением 2.4 вольта на элемент.

В принципе, срок хранения без подзарядки достигает двух лет. Подзарядку после длительного хранения изготовители рекомендуют производить для приведения в рабочее состояние, возможно, застывшего геля. Это, кстати, один из недостатков гелевых аккумуляторов по сравнению со свинцово-кислотными. Минимальная рабочая температура для них не должна быть ниже -20°С.

При более низких температурах гель застывает, электрические характеристики снижаются.

В настоящее время промышленностью выпускаются два вида гелевых аккумуляторов – GEL и AGM. В GEL-батареях функцию загустителя для электролита выполняет силикогель, а в качестве сепаратора используется дюропластик. В AGM-батареях в качестве сепаратора используется стекловолокно, которое одновременно служит для абсорбации электролита.

Аккумуляторная батарея SIGA 230 Ач 12 В Гель

В этой батарее в качестве электролита используется серная кислота с диоксидом кремния. Электролит представляет собой гелевую массу, которой заполнен корпус изделия. Этот гель обеспечивает наилучшую защиту от коррозии и сульфатации, так как при этом не происходит расслоения. Кроме того, аккумулятор, изготовленный по такой технологии, не боится глубокого разряда.


Аккумулятор SIGA 230 Ач 12 В Гель

Основные технические данные:
Напряжение: 12 вольт;
Емкость: 230 Ач;
Клеммы: М8, внутренняя резьба;
Технология батареи: Гелевая;
Подзаряд: Потеря энергоемкости на 30% после 1900 циклов;
Расчетная долговечность: 2400 циклов;
Максимальное напряжение
зарядки: 14.2 В – 14.4 В;
Максимальный ток зарядки: 46 А;
Диапазон рабочих температур: от -20°С до +65°С;
Габаритные размеры (ДхШхВ): 522х240х223 мм;
Вес: 66 кг.
Цена: 35000 рублей.

Безусловно, гелевые батареи по некоторым показателям уступают обычным. Они тяжелее, чувствительны к низким температурам, дороже. Но, так как они будут эксплуатироваться в утепленном помещении, причем, не загрязняя воздух, температура будет для них некритична. А все остальные показатели, включая долговечность, неприхотливость, а также то, что они не требуют никого обслуживания, делают гелевые аккумуляторы более привлекательными для построения домашней солнечной электростанции.

Аккумуляторы для солнечных батарей

В солнечной энергетике особое место занимают аккумуляторные батареи, которым отводиться роль посредника в передаче получаемых электрических мощностей конечным потребителям. Объяснить это можно тем, что максимальная величина электрической энергии вырабатывается солнечной батареей при интенсивном световом облучении, которое происходит в дневное время.

Однако наибольшее ее потребление осуществляется с наступлением темноты, когда массово используется освещение с бытовыми приборами. Аккумуляторы позволяют сохранять излишки выработанной днем электроэнергии для вечернего и ночного ее использования.

Конечно, как вариант, в дневное время можно отключать в резерв часть работающих солнечных модулей, но это не решит вопрос вечернего дефицита электричества.

Принцип работы аккумуляторов

Любые электрические аккумуляторы рассматриваются как источники постоянного тока многоразового использования с возможностями выполнения обратимых химических процессов путем проведения многократных циклов заряда с пропусканием электрических токов в направлении, противоположном обратному движению элементарных частиц при разряде.

Почему выбирают свинцово-кислотные модели

Статистическими исследованиями выявлено, что работа элитных литиевых аккумуляторов производства КНР стоит около $0,4 за 1 Вт/час с длительностью ресурса 1000÷2000 циклов заряд/разряд, которого хватает на 3-6 лет.

Самые дешевые, естественно, экологически не безопасные, свинцово-кислотные аккумуляторные батареи оцениваются по $0,08 с примерно таким же характеристиками, но с КПД ≈75% (теряют четверть получаемой энергии).

Эти примеры свидетельствуют об экономической нецелесообразности использования дорогих конструкций аккумуляторов в системах домашних солнечных электростанций.

Рекомеднуем также посмотреть:

Основные эксплуатационные параметры аккумуляторов

температурные и атмосферные режимы,

Емкость аккумулятора определяется величиной заряда, который замеряется при отдаче энергии потребителям от полного заряженного состояния до минимально допустимой величины выходного напряжения.

Для технических международных измерений применяется система СИ (единица измерения «Кулон»). В практической деятельности на территории стран СНГ издавна сложилась традиция определять емкость аккумуляторной батареи в ампер-часах при стандартном соотношении: 1А/час=3600Кл.

Сейчас стала использоваться еще одна подобная характеристика — энергетическая емкость, которая подразумевает величину энергии, отдаваемой потребителям от полностью заряженного аккумулятора до достижения состояния минимального выходного напряжения.

Единица ее измерения в системе СИ — «Джоуль», а на практике — ватт-час с соотношением 1Вт/час=3600Дж.

Плотность энергии учитывает общее количество энергии, распределенной в единице объема (либо веса) аккумулятора. Этот параметр используется для сравнения эффективности конструктивных особенностей разных моделей.

Саморазряд используется с целью анализа потерь полученного заряда на холостом ходу работы, когда отсутствует нагрузка. Термин введен для оценки качества работы конкретной конструкции при длительном хранении энергии.

Работоспособность свинцово-кислотных аккумуляторов по саморазряду оценивается потерей 40% емкости при годичном хранении под температурой +20 о С или 15% при — +5 о С. Эти примеры наглядно демонстрируют возрастание саморазряда при повышении температуры.

В условиях хранения +40 о С потеря 40% емкости может наступить через 4 месяца.

Температурные и атмосферные режимы

Аккумуляторы плохо переносят резкие перепады температуры, нагрев выше +40 о С и охлаждение ниже, чем -25 о С.

Их нельзя держать около открытого огня из-за возможности самовоспламенения паров или непреднамеренного нагрева. Попадание воды и атмосферных осадков на аккумуляторную батарею недопустимо по причине возникновения токов саморазряда через создаваемые дополнительно электрические цепи.

Тип аккумуляторной батареи определяется на основе конструкции корпуса:

требующего контроля за электролитом и восстановления его уровня при выкипании паров,

герметичных моделей, использующих замкнутый цикл. Они могут быть необслуживаемого исполнения с гарантией работы до 5 лет (чувствительны к глубокому разряду и перезаряду) или малообслуживаемые, требующие контроля и доливки воды два раза в год.

Процесс заряда аккумуляторов

Работа аккумулятора связана с изменением его внутренней химической энергии. Ее запас постоянно уменьшается при разряде и ведет к снижению тока и напряжения. Для ее восстановления достаточно пропустить постоянный ток большего напряжения в обратном направлении.

На практике принято выбирать его величину по соотношению: численное выражение 100% номинальной емкости в ампер/часах делят на 10 и получают значение тока в амперах. Эта эмпирическая величина не имеет научных обоснований, но широко применяется для проведения восьмичасовых циклов заряда. Однако она лучше всего подходит для NiMh и NiCd конструкций, а не свинцово-кислотных.

В солнечных электростанциях осуществляется заряд во время рабочего цикла схемы.

Устройство и принцип работы солнечной электростанции ранее был рассмотрен здесь: Солнечные электростанции для дома

Особенности эксплуатации аккумуляторов для солнечных батарей

Экономия режима работы

Алгоритмы контроллера и инвертора должны обеспечивать максимальные возможности передачи энергии от солнечных модулей к конечным потребителям без участия рабочих аккумуляторов, ресурс которых следует аккуратно использовать только для хранения и передачи ими излишков получаемой энергии.

Защита от тряски

При перемещениях и/или вибрациях корпуса возможно просачивание электролита на внешнюю поверхность, что вызывает увеличенный саморазряд. Для его профилактики требуется нейтрализовать образующиеся подтеки слабыми водными растворами пищевой соды или хозяйственного мыла в состоянии, соответствующем виду разжиженной сметаны.

Влияние температуры

Высокая температура аккумуляторной батареи ведет к испарениям воды: увеличивается плотность электролита и повышается напряжение на выходе. Этот процесс требует контроля — могут оголиться контактные пластины. Поэтому необходимо регулярно доливать до контрольного уровня дистиллированную воду.

При низких температурах увеличивается вязкость электролита: он хуже контактирует с электродами, начинает меньше отдавать зарядов, быстрее истощается.

Состояние электролита

Плотность раствора

Лучшая проводимость электролита наблюдается при комнатной температуре и плотности раствора 1,23г/м 3 . В холодных условиях эксплуатации рекомендуется увеличивать ее до значения 1,29÷1,31г/см 3 .

Заниженная до 1,10г/см 3 плотность в сильный мороз может быть причиной замерзания электролита, что проявится раздутием корпуса аккумуляторной батареи.

Отсутствие/наличие примесей

В корпус аккумуляторной батареи должны заливаться только специальная очищенная от примесей кислота и дистиллированная вода. Применение технической кислоты и/или обыкновенной воды нарушает химические процессы, ведет к увеличению сульфатации пластин (образованию диэлектрического слоя примесей), саморазряду, снижению емкости и ресурса.

Примеси полностью удалить невозможно, а эксплуатировать целую систему аккумуляторов даже с одним, имеющим глубокий саморазряд, не имеет смысла. Он все испортит.

Восстановление работоспособности аккумулятора

При физическом разрушении пластин вернуть к работе аккумулятор не получится. А предотвратить начавшуюся сульфатацию можно попытаться, но…без должной гарантии результата.

Способ использования раствора сульфата магния

Секции батареи заливают раствором и подвергают нескольким циклам разряда/заряда. Образовавшиеся сульфаты и примеси на пластинах станут осыпаться на дно. Их надо будет удалить: могут закоротить электрические цепи. Хорошо промытые банки заливают новым электролитом с номинальной плотностью и вводят в эксплуатацию.

Читайте также:  Солнечный коллектор для нагрева воды своими руками: как сделать коллектор для отопления дома

Этот метод позволяет в определенных случаях продлить ресурс аккумулятора.

Заряд пульсирующим током

Иногда для профилактики сульфатации мастера заряжают аккумулятор выпрямленным током, получаемый срезанием одной полуволны промышленной синусоиды мощным диодом. Считается, что проводимый короткими импульсами тока заряд предотвращает образование диэлектрического слоя примесей на пластинах.

Преимущества и отличия свинцовых аккумуляторных батарей, разработанных для солнечной электростанции

Режим автомобильных батарей

Такие аккумуляторы выпускаются для надежной работы стартера в любое, даже холодное время года. Процесс прокрутки ротора двигателя с кривошипно-шатунным механизмом связан с большими механическими усилиями, требующими увеличенных токов для электродвигателя стартера на момент запуска.

Во время поездки аккумуляторная батарея постоянно подзаряжается от генератора.

Режим работы солнечной электростанции

Аккумуляторы подзаряжаются рабочими токами солнечных батарей и не испытывают огромных кратковременных нагрузок, как автомобильные аналоги.

Стационарные необслуживаемые аккумуляторы для промышленных задач компании Sonnenschein А700, А500, А400 успешно работают в режимах циклического и/или постоянного подзаряда.

Аккумуляторные батареи компании Delta в основном снабжаются клапанным регулированием давления газов внутри корпуса, работают в схемах альтернативной энергетики.

Ведущие производители аккумуляторов для солнечных батарей (солнечных аккумумляторов)

Выпуском аккумуляторов для промышленных целей занимаются популярные на российском рынке компании: Bosh (Германия), Sonnenschein (Германия), YUASA (Великобритания), C&D Technoloqies (США), Delta (Китай), Haza (Китай), APS (Тайвань).

Каждая из них имеет свои особенности. Например, батареи Haza выпускаются по технологиям AGM и HZY (гелевая) для совместной работы с солнечными модулями.

Чтобы подобрать подходящую модель аккумуляторной батареи для солнечной электростанции вначале надо хорошо продумать условия их эксплуатации и только после этого искать конкретную конструкцию по напряжению, емкости и другим описанным характеристикам.

Принцип работы контроллеров для заряда солнечных батарей, устройство, что учитывать при выборе рассмотрен здесь.

Точка J

Обзоры и рейтинги статьи

Аккумуляторы для солнечных батарей: гелевые, свинцово-кислотные и др

Системы альтернативной энергетики все чаще используют при обеспечении жилых домов электричеством. Так как режимы генерации и потребления электроэнергии различаются, то необходимо обеспечит ее накопление для последующей отдачи.

Поэтому применяют специальные аккумуляторы для солнечных батарей и ветрогенераторов, которые предназначены для работы в циклах зарядки и разрядки.

  • Аккумуляторы в системе бытовой гелеоэнергетики
    • Способ объединения устройств в единый массив
    • Особенности функционирования системы
    • Расчет необходимой емкости батарей
    • Максимально допустимые токи
  • Особенности устройства и основные параметры
    • Используемые типы для альтернативной энергетики
    • Выбор модели аккумулятора
  • Выводы и полезное видео по теме

Аккумуляторы в системе бытовой гелеоэнергетики

Понимание способов и нюансов использования аккумуляторов при обеспечении объекта электроэнергией от солнечных батарей позволит осуществить правильный выбор устройств и обеспечит максимальный КПД системы. Поэтому необходимо знать о способах создания аккумуляторного массива (блока) и правила расчета основных характеристик.

Способ объединения устройств в единый массив

Жилые и промышленные объекты потребляют электрическую нагрузку, превышающую возможности одного аккумулятора. В том случае, если система солнечной энергетики рассчитана на большое количество электроприборов, необходимо создание массива аккумуляторных батарей по примеру подобного объединения солнечных панелей.

Подключение аккумуляторов в единый массив хранения электроэнергии можно выполнить параллельным, последовательным или смешанным способом. Выбор зависит от необходимых выходных показателей мощности и напряжения.

Аккумуляторные батареи размещают в доме или ином строении для обеспечения значения температуры окружающего воздуха в диапазоне от 10 до 25 градусов Цельсия выше нуля и предотвращения попадания на них воды. Это значительно продлевает срок службы устройств и уменьшает потери электроэнергии.

Современные технологии производства аккумуляторных батарей, предназначенных для размещения в жилых строениях, предусматривают повышенные меры экологической безопасности. Поэтому, предпринимать каких либо специальных мер по интенсивной вентиляции помещения нет необходимости. Однако располагать их в жилых комнатах все же не следует.

Так как аккумуляторы имеют значительный вес (прибор на 12 Вольт и 200 Ач весит около 70 кг), то их надо размещать на полу или прочных и надежно закрепленных стеллажах. Необходимо предотвратить вероятность падения аккумуляторов с высоты, так как в этом случае они выйдут из строя, а системы с жидким электролитом к тому же опасны для здоровья человека при их разгерметизации.

С увеличением длины силового кабеля возрастает электрическое сопротивление, что приводит к уменьшению КПД системы. Поэтому практикуют размещение аккумуляторов вплотную друг к другу, чтобы минимизировать общую протяженность проводов.

Особенности функционирования системы

При параллельном и комбинированном последовательно-параллельном соединении аккумуляторов в единый массив возможна разбалансировка устройств по уровню заряда. Это приводит к тому, что устройство будет функционировать не в полном цикле, а значит, его ресурс будет выработан быстрее.

Система получения электроэнергии от солнца всегда снабжена контролером, который управляет зарядом аккумулятора. В случае создания массива батарей дополнительно необходима установка выравнивающих заряд перемычек.

Во избежание проблем неравномерной зарядки и разрядки объединенных в единый массив аккумуляторов необходимо использовать устройства одной модели, а еще лучше – одной партии. Это правило актуально не только для систем солнечной энергетики.

Сейчас практически все жилье можно обеспечить приборами, работающими от сети в 12 или 24 Вольта, в том числе холодильниками, телевизорами и т.д. Однако разводка с таким напряжением по всему дому не имеет смысла, так как мощность тока будет очень велика. Следовательно, при реализации такой задумки необходим дорогой кабель с большим сечением жил и будут велики потери от электрического сопротивления.

Поэтому в непосредственной близости от аккумуляторных батарей устанавливают инвертор – устройство для преобразования электрического напряжения.

Кроме того, реальное выходящее напряжение от аккумуляторного блока может несколько отличаться от заявленного. Так, полностью заряженные популярные для использования в комплекте с солнечными батареями гелевые аккумуляторы выдают напряжение 13-13,5 Вольта, поэтому инвертор выполняет функции стабилизатора.

Расчет необходимой емкости батарей

Емкость аккумуляторных батарей рассчитывают исходя из предполагаемого периода автономной работы без подзарядки и суммарной мощности потребления электроприборов. Среднюю по временному интервалу мощность электроприбора можно рассчитать следующим образом:

  • P1 – паспортная мощность прибора;
  • T1 – время работы прибора;
  • T2 – общее расчетное время.

Практически на всей территории России существуют длительные периоды, когда солнечные батареи не будут работать по причине плохой погоды. Устанавливать большие массивы аккумуляторов для их полной загруженности всего несколько раз в год нерентабельно. Поэтому, к выбору интервала времени в течение которого устройства будут работать только на разряд необходимо подойти исходя из среднестатистического значения.

Если планируют использовать накопленную энергию в течение суток, то лучше принять за расчет чуть больший интервал, такой как 30 часов. А в случае длительного периода, когда нет возможности использовать солнечные батареи, необходимо применить другую систему получения электроэнергии, основанную, например, на дизель- или газогенераторе.

Заряженный на 100% аккумулятор может до своей полной разрядки выдать мощность, которую можно рассчитать по формуле:

P = U x I

Где:

  • U – напряжение;
  • I – сила тока.

Так, один аккумулятор с параметрами напряжения 12 вольт и силы тока 200 ампер, может сгенерировать 2400 ватт (2,4 кВт). Для расчета суммарной мощности нескольких аккумуляторов, необходимо сложить значения, полученные для каждого из них.

Полученный результат необходимо умножить на несколько понижающих коэффициентов:

  • КПД инвертора. При правильном согласовании напряжения и мощности на входе в инвертор будет достигнуто максимальное значение от 0,92 до 0,96.
  • КПД силовых кабелей. Минимизация длины проводов, соединяющих аккумуляторы и расстояния до инвертора необходима для снижения электрического сопротивления. На практике значение показателя составляет от 0,98 до 0,99.
  • Минимально допустимое разряжение батарей. Для любого аккумулятора существует нижний предел зарядки, при преодолении которого срок службы устройства значительно снижается. Обычно, контроллеры выставляют на минимальное значение зарядки 15%, поэтому коэффициент равен около 0,85.
  • Максимально допустимая потеря емкости до смены аккумуляторов. Со временем происходит старение устройств, повышение их внутреннего сопротивления, что приводит к безвозвратному уменьшению их емкости. Использовать устройства, остаточная емкость которых менее 70% нерентабельно, поэтому значение показателя нужно взять за 0,7.

Вопреки распространенному мнению, КПД аккумулятора – отношение полученной и отданной электроэнергии включать в расчет не следует. Указанный в технической документации показатель емкости аккумулятора учитывает возможный объем на отдачу.

В итоге значение интегрального коэффициента при расчете необходимой емкости для новых аккумуляторов будет приблизительно равно 0,8, а для старых, перед их списанием – 0,55.

Максимально допустимые токи

Для каждого аккумулятора в технической документации прописан максимально допустимый ток заряда. Превышение этого значение ведет к перегреву устройства, резкому и безвозвратному снижению его показателей. Поэтому при выборе батарей необходимо убедиться в том, что они могут обеспечить потребление вырабатываемого солнечными панелями электричества.

Еще один важный показатель – допустимый разрядный ток:

  • Штатный разрядный ток, для работы на величине которого (или меньшем значении) предназначен аккумулятор. Работа всего подключенного в систему электрооборудования должна быть обеспечена этим показателем.
  • Максимальный разрядный ток, который кратковременно может дать устройство при пиковых нагрузках. Такие нагрузки могут возникнуть при включении некоторого оборудования, например содержащего компрессоры холодильника или кондиционера.

Превышение длительное время первого показателя или кратковременного – второго ведет к преждевременному износу аккумулятора. При старении устройств эти показатели снижаются на 20-30%, что также необходимо учитывать.

Особенности устройства и основные параметры

Автомобильные аккумуляторы не предназначены для работ с большим количеством циклов зарядки и разрядки. Для альтернативной и резервной энергетики используют устройства другого типа. Так как их стоимость велика, то необходимо тщательно изучить все параметры перед приобретением.

Используемые типы для альтернативной энергетики

Практически все аккумуляторы, применяемые в альтернативной энергетике и устанавливаемые в строениях, относятся к типу необслуживаемых. Пользователю нет возможности проводить с ними физические операции, затрагивающие их структуру. Это сделано для того, чтобы минимизировать риск физического или химического воздействия батарей на людей, воздух и окружающие их предметы.

Поэтому нет необходимости подробного изучения структуры и физико-химических нюансов работы аккумуляторных батарей разных типов. Большее внимание надо уделить различиям в основных технических характеристиках устройств.

OPzS аккумуляторы выполнены подобно простейшим свинцово-кислотным устройствам. Изменение в форме положительной пластины позволяет обеспечить значительно большее число циклов зарядки и разрядки, чем у автомобильных аналогов. Недостатком является наличие жидкого электролита, что может быть опасно при их разгерметизации. Средняя ценовая ниша.

Щелочные (никелевые) аккумуляторы применяют редко по причине их невосприимчивости к малым токам при зарядке и необходимости прохождения полного цикла от заряженного до разряженного состояния. В ином случае произойдет уменьшение емкости батареи. Также эти устройства имеют больший вес и габариты по сравнению с конкурентами той же емкости. Опасны при разгерметизации. Низкая ценовая ниша.

В AGM аккумуляторах электролит находится в связанном состоянии в структуре из стекловолокна. Их можно заряжать малыми токами. Практически безопасны и занимают среднюю ценовую нишу среди конкурентов.

В GE (гелевых) аккумуляторах в электролит добавлен оксид кремния, в результате чего он находится в гелеобразном состоянии. Устройства обладают высокой степенью безопасности и хорошими характеристиками. Высокая ценовая ниша.

Аккумуляторные батареи на основе лития (например, литий-железо-фосфатные модели) обладают очень хорошими характеристиками, компактны, имеют значительно меньший вес, практически безопасны. Однако их стоимость значительно выше, чем у конкурирующих типов устройств, даже гелевых.

С позиции соотношения цены и технических характеристик гелевый и литиевый тип аккумуляторов наиболее привлекателен. Однако единовременные стартовые вложения в них весьма велики, поэтому устройства других типов тоже широко распространены на рынке батарей для альтернативной энергетики.

Выбор модели аккумулятора

Основные параметры аккумуляторных батарей для гелиоэнергетики, на которые необходимо обратить внимание при покупке следующие:

  • напряжение и емкость, определяющие мощность аккумулятора;
  • глубина безопасного максимального разряда, при соблюдении которой возможно функционирование аккумулятора заявленные производителем сроки;
  • гарантированное количество циклов зарядки и разрядки при соблюдении всех технических условий;
  • величина саморазряда, характеризующая интенсивность потери электроэнергии в заряженном аккумуляторе при простое;
  • максимальный ток заряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор способен принять без ущерба для дальнейшего функционирования;
  • штатный ток разряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор длительно способен отдать без ущерба для дальнейшего функционирования;
  • максимальный ток разряда, определяющий количество электроэнергии за единицу времени, которое аккумулятор кратковременно способен отдать без ущерба для дальнейшего функционирования;
  • оптимальная температура для работы устройства;
  • размер и масса аккумулятора, знание которых необходимо для выбора места их размещения и способа установки.

Все эти параметры описаны в технической документации, которую в электронном виде размещают на сайте всех крупных производителей.

Выводы и полезное видео по теме

Обзор нюансов функционирования аккумуляторов разных типов для гелиосистем:

Сравнения разных типов стартерных аккумуляторов. Плюсы и минусы для альтернативной энергетики:

Опыт использования литиевых (LiFePo4) аккумуляторов. Реальный блок из автомобильных устройств, нюансы его работы:

Правильный выбор аккумуляторов по их параметрам позволит обеспечить надежную работу альтернативной энергосистемы. Не надо чрезмерно экономить на блоке хранения электроэнергии – первоначальные стартовые вложения окупятся бесперебойной работой системы на несколько лет вперед.

Читайте также:  Уличное освещение на солнечных батареях: функции фонарей

Какие требования предъявляются к аккумуляторам для солнечных батарей?

Во всех автономных гелиосистемах есть такие обязательные компоненты, как сами солнечные батареи, контроллер, инвертор, а также аккумулятор. Сегодня мы поговорим про аккумуляторы для солнечных батарей. В гелиосистемах они выполняют несколько функций, которые можно объединить одной фразой ─ накопление и последующая отдача электрической энергии. Аккумулятор – это один из ключевых элементов гелиосистемы. На пике производительности при ярком солнечном свете солнечные батареи преобразуют электричества значительно больше, чем необходимо. При этом ночью они простаивают. АКБ решает задачу накопления днём и расходование её ночью. То есть, основная функция аккумуляторов в гелиосистемах – это бесперебойное обеспечение электричеством потребителей. В продаже имеется множество аккумуляторов, но не все будут хорошо работать в солнечных системах. В этой статье поговорим о том, какие АКБ лучше всего подходят для работы вместе с солнечными батареями.

Особенности работы аккумуляторов в гелиосистемах

Основные задачи АКБ в гелиосистемах можно обозначить так:

  • Накопление энергии в дневное время и использование её ночью;
  • Поддержание питания потребителей в моменты пиковой нагрузки, когда фотоэлементы не справляются;
  • Возмещение недостатка питания от солнечной батареи в пасмурную погоду.

Аккумулятор в гелиосистеме

Часто в гелиосистемах работает больше одного аккумулятора. Несколько аккумуляторов объединяются в цепь либо для увеличения ёмкости, либо для увеличения напряжения. А в некоторых случаях для достижения обеих этих целей. Поэтому используются 3 различных схемы объединения аккумуляторов:

  • Последовательно. В такой схеме суммарная ёмкость будет равна значению для одного аккумулятора. Ёмкость должна быть одинаковой у всех батарей в цепи. Напряжение этой системы будет вычисляться как сумма напряжений всех аккумуляторов;
  • Параллельно. В такой схеме напряжение остаётся, как у одного аккумулятора, а ёмкости суммируются;
  • Комбинированно. Использует две предыдущих схемы.

При объединении аккумуляторов в цепь, помните, что объединять нужно только аккумуляторы одного типа (щелочные, свинцово-кислотные и т. п.), одной ёмкости, возраста, напряжения. Ещё лучше, если они будут одного производителя. В случае если аккумуляторов много, то они должны быть установлены на стеллажах.

Если делается последовательно-параллельное соединение, то следует установить перемычки в промежуточных точках для самовыравнивания. Чтобы происходило равномерное снятие мощности с батареи, положительный вывод подключайте с соседней АКБ, а минус с той, что по диагонали. В этом случае разбалансировка работы аккумуляторов будет значительно меньше.

Итак, какие основные требования предъявляются к аккумуляторам, работающим в составе гелиостанций.

  • Должны выдерживать как можно большее число зарядов и разрядов;
  • Должны заряжаться большим зарядным током;
  • Низкий саморазряд;
  • Простые в обслуживании;
  • Работают в широком диапазоне рабочих температур.

Что учесть при выборе?

Теперь, давайте, выделим основные требования к АКБ, работающим в составе гелиосистем.

  • Скорость заряда и разряда. Номинальная ёмкость аккумуляторной батареи, которую указывает производитель на своих изделиях, может не соответствовать времени зарядки АКБ в реальных условиях эксплуатации. Так, время при разряде в десяти и двадцати часовом режимах, это разные величины при одной и той же номинальной ёмкости батареи;
  • Ёмкость. Является одной ключевых характеристик АКБ для солнечной системы. Величина ёмкости подбирается в зависимости от закладываемого энергопотребления из расчёта того, что батарея должна обеспечивать питанием потребителей в течение 4 часов. Помимо этого, не забудьте, что к расчётной величине следует прибавить 35 процентов от неё. Такой запас прочности нужен для того, чтобы при эксплуатации не произошёл глубокий разряд аккумулятора;
  • Размеры и масса. Различные типы аккумуляторов при одинаковой ёмкости могут иметь различную массу. Если говорить в общем случае, то ёмкость батареи увеличивается пропорциональной массе. Это объясняется тем, что прибавка ёмкости достигается увеличением количества пластин;
  • Условия эксплуатации. При покупке нужно выяснить интервал рабочих температур, а также необходимость периодического обслуживания и его периодичность;
  • Срок эксплуатации (число циклов заряд-разряд). На будущее запомните, что чем меньше степень разряда батареи при работе, тем дольше он прослужит. Это правило справедливо не только для солнечных систем, но в других устройствах.

Различные виды аккумуляторов для солнечных батарей

Автомобильные стартерные батареи (WET)

Многие в составе небольших солнечных систем используют обычные аккумуляторы для автомобиля. Это уменьшает конечную стоимость системы и, в принципе, нет ничего смертельного в их использовании. Другое дело, что такие АКБ придётся менять чаще. Автомобильные батареи предназначены для отдачи большого тока за короткий интервал времени. А затем должен следовать заряд. А в солнечной системе они разряжаются малым током длительное время. Причём разряд может быть глубокий. Такой режим работы для них губителен и они быстро теряют свою ёмкость и работоспособность.

В гелиосистемах часто используют грузовые аккумуляторы большой ёмкости

Если всё же будете использовать автомобильный свинцово-кислотный аккумулятор, то устанавливайте их в подсобных помещениях. Дело в том, что при излишней зарядке (при увеличении напряжения на клеммах более 14,4 вольта) электролит в банках «кипит». Это проходит гидролиз воды с выделением кислорода и водорода на разных электродах. Поэтому помещение с аккумуляторами должно иметь хорошую вентиляцию, чтобы пары не накапливались.

Аккумуляторы AGM и GEL

Эти батареи выпускаются по технологиям Absorptive Glass Mat и Gelled Electrolite. Они также являются свинцово─кислотными АКБ. Только электролит в них находится в связанном состоянии. В случае AGM электролитом пропитано стекловолокно, а у GEL – серная кислота переведена в гелеобразное состояние с помощью добавки оксида кремния. Этот тип аккумуляторов значительно лучше подходит для использования в солнечных системах.

Тяговый гелевый аккумулятор

Аккумуляторы OPzS

Аккумуляторные батареи OPzS выполняются по технологии свинцово-кислотных аккумуляторов с жидким электролитом. Но у них в конструкции есть одна особенность. Положительная пластина выполняется трубчатой. Это значительно увеличивает число циклов заряда и разряда. В продаже встречаются аккумуляторы OPzS с ёмкостью от 50 до 3500 Aч.

Щелочные

Аккумуляторы этого типа в основном используются в качестве тяговых. Поэтому они лучше остальных типов АКБ переносят глубокий разряд. Причём большими токами.

Но и минусов у них предостаточно. В частности, у них низкая энергетическая плотность. Поэтому батарея номиналом 12 вольт будет существенно больше свинцовой. Кроме того, у этих аккумуляторов есть эффект памяти. Если их разрядить не полностью, а затем поставить на зарядку, они теряют часть ёмкости. При функционировании в составе солнечной системы нельзя гарантировать их полный разряд. А значит, они систематически будут терять ёмкость.

Но они нашли своё применение в системах, работающих от солнечной энергии. Это светильники и уличные фонари на солнечных батареях. Там используются никель─кадмиевые и никель─металлогидридные АКБ.
Вернуться к содержанию

Литиевые батареи

В сети можно найти отзывы об использовании литиевых батарей в солнечных системах. В частности, это литий-железо-фосфатные модели. Но примеры единичные и по ним нельзя оценить их эффективность при работе в связке с солнечными батареями.

Литиевые АКБ имеют более высокую энергоёмкость, чем щелочные или свинцово-кислотные. Поэтому при равной ёмкости они будут иметь меньшие размеры. Кроме того, они быстрее заряжаются и без проблем выдерживают глубокий разряд. Но высокая стоимость таких аккумуляторов перечёркивает их достоинства. Кроме того, нужно решать вопрос с их безопасным использованием, поскольку для них критичен перегрев и перезаряд. Это также приводит к удорожанию солнечной системы.

Выбор аккумуляторов для солнечных батарей

Май 2018

Щелочные АКБ

В отличие от кислотных, щелочные аккумуляторы отлично справляются с глубоким разрядом и способны длительное время отдавать токи примерно на 1/10 емкости батареи. Более того, щелочные батареи настоятельно рекомендуется разряжать полностью, чтобы не возникал так называемый «эффект памяти», который снижает емкость АБ на величину «невыбранного» заряда.

В сравнении с кислотными, щелочные батареи имеют значительный — 20 лет и более — срок службы, выдают стабильное напряжение в процессе разряда, также бывают обслуживаемыми (заливными) и необслуживаемыми (герметизированными) и, кажется, просто созданы для солнечной энергетики. На самом деле нет, потому что не способны заряжаться слабыми токами, которые генерируют солнечные панели. Слабый ток свободно течет через щелочной аккумулятор, не наполняя батарею. Поэтому увы, но удел щелочных батарей в автономных энергосистемах – служить «банкой» для дизель-генераторов, где этот тип накопителей просто незаменим.

Литий-ионные АКБ

Батареи такого типа имеют принципиально иную «химию», чем аккумуляторы для планшетов и ноутбуков, и используют литий-железно-фосфатную реакцию (LiFePo4). Они очень быстро заряжаются, могут отдавать до 80% заряда, не теряют емкости из-за неполной зарядки или долгого хранения в разряженном состоянии. Батареи выдерживают 3000 циклов, имеют срок службы до 20 лет, производятся в том числе в России. Самые дорогие из всех, но в сравнении с, например, кислотными, имеют вдвое большую емкость на единицу веса, то есть их понадобится вдвое меньше.

Основные технические характеристики АКБ

Характеристики и требования к аккумуляторам определяются исходя из особенностей работы самой солнечной электростанции.

Аккумуляторные батареи должны:

  • быть рассчитаны на большое количество циклов заряда-разряда без существенной потери емкости;
  • иметь низкий саморазряд;
  • сохранять работоспособность при низких и высоких температурах.

Ключевыми характеристиками принято считать:

  • емкость батареи;
  • скорость полного заряда и допустимого разряда;
  • условия и срок эксплуатации;
  • весогабаритные показатели.

Как правильно рассчитать и выбрать АКБ

Расчеты строятся на простых формулах и допусках на потери, которые возникают в автономной системе энергоснабжения.

Минимальный запас энергии в аккумуляторах должен обеспечивать нагрузку в темное время суток. Если от заката до рассвета общее энергопотребление составляет 3 кВт/, то и банк аккумуляторов должен иметь такой запас.

Оптимальный запас энергии должен покрывать суточные потребности объекта. Если нагрузка составляет 10 кВт/ч, то банк с такой емкостью позволит без проблем «пересидеть» 1 пасмурный день, а в солнечную погоду не будет разряжаться более чем на 20−25%, что оптимально для кислотных аккумуляторов и не ведет к их деградации.

Здесь мы не рассматриваем мощность солнечных батарей и принимаем за факт, что они в состоянии обеспечить такой заряд аккумуляторам. То есть, строим расчеты на потребности объекта в энергии.

Запас энергии в 1 батарее емкостью 100Ач напряжением 12 В считается по формуле: емкость х напряжение, то есть, 100 х 12 = 1200 ватт или 1,2 кВт*ч. Следовательно, гипотетическому объекту с ночным потреблением 3 кВт/ч и суточным в 10 кВт/ч нужен минимальный банк из 3 аккумуляторов и оптимальный из 10. Но это в идеале, потому что нужно учесть допуски на потери и особенности оборудования.

Где теряется энергия:

50% – допустимый уровень разряда обычных кислотных батарей, поэтому если банк построен на них, то аккумуляторов должно быть вдвое больше, чем показывает простой математический расчет. Батареи, оптимизированные под глубокий разряд, можно «опустошать» на 70−80%, то есть емкость банка должна быть выше расчетной на 20−30%.

80% – средний КПД кислотной батареи, которая в силу особенностей отдает энергии на 20% меньше, чем запасает. КПД тем ниже, чем выше токи заряда и разряда. Например, если к аккумулятору емкостью 200Ач через инвертор подключить электроутюг мощностью 2 кВт, то ток разряда составит около 250А, а КПД упадет до 40%. Что опять приводит к необходимости двукратного запаса емкости банка, построенного на кислотных аккумуляторах.

80-90% – средний КПД инвертора, который преобразовывает постоянное напряжение в переменное 220 В для бытовой сети. С учетом потерь энергии даже в самых лучших батареях общие потери составят примерно 40%, то есть даже при использовании OPzS и тем более AGM-аккумуляторов запас емкости должен быть на 40% выше расчетного.

80% – эффективность работы ШИМ-контроллера заряда, то есть, солнечные батареи физически не смогут передать аккумуляторам более 80% энергии, выработанной в идеальный солнечный день и при максимальной паспортной мощности. Поэтому лучше использовать более дорогие MPPT- контроллеры, которые обеспечивают отдачу солнечных батарей почти до 100%, либо увеличивать банк аккумуляторов и, соответственно, площадь солнечных батарей еще на 20%.

Все эти факторы нужно учитывать в расчетах в зависимости от того, какие составные элементы используются в системе солнечной генерации.

Правила эксплуатации АКБ

Обслуживаемые аккумуляторные батареи при работе выделяют газы, поэтому ставить их в жилых помещениях запрещено и нужно оборудовать отдельную комнату с активной вентиляцией.

Уровень электролита и глубину заряда нужно постоянно контролировать во избежание выхода АКБ из строя.

При круглогодичной эксплуатации во избежание глубокого разряда аккумуляторов в пасмурные дни необходимо предусмотреть возможность их подзарядки от внешних источников — сети или генератора. Многие модели инверторов могут реализовать такое переключение в автоматическом режиме.

Краткий итог

Чтобы правильно рассчитать емкость банка аккумуляторов, нужно определить суточное потребление энергии, прибавить 40% неустранимых потерь в АКБ и инверторе и далее увеличивать расчетную мощность в зависимости от типа батарей и контроллера.

Если солнечная генерация будет использоваться и в зимнее время, то итоговую емкость банка нужно увеличить еще на 50% и предусмотреть возможность подзарядки батарей от сторонних источников — сети или генератора, то есть высокими токами. Это также повлияет на выбор батарей с определенными характеристиками.

Если вы затрудняетесь с самостоятельными расчетами или хотите убедиться в их правильности — обращайтесь к специалистам ООО «Энергетический центр» — это можно сделать через онлайн-чат на сайте «Со светом» либо позвонить по телефону. У нас огромный опыт по комплектации и установке систем солнечной генерации на различных объектах — от коттеджей и дачных домов до объектов производственного и сельскохозяйственного назначения.

Производители предлагают такой широкий ассортимент оборудования, что собрать солярную электростанцию по вашим требованиям и финансовым возможностям не составит труда.

Чем гелевые аккумуляторы для солнечных батарей отличаются от стартерных, щелочных и литиевых?

Обновлено: 13 августа 2019

Виды аккумуляторов для солнечных батарей

Солнечный внешний аккумулятор (или солнечная батарея) — это общее наименование всего комплекта. Он состоит их нескольких элементов, выполняющих собственные функции. Прием солнечной энергии выполняется фотоэлементами, которые вырабатывают определенный электрический сигнал при попадании на рабочую поверхность потоков света. Для накопления энергии существуют аккумуляторы, действующие по обычному принципу.

Аккумуляторные батареи для солнечных панелей— не отдельный вид оборудования. Используются обычные модели, которые применяются повсеместно и обладают стандартным набором функций. Именно они являются источником питания приборов потребления, поскольку подключение солнечных батарей напрямую встречается крайне редко из-за непостоянства солнечного освещения.

Рассмотрим наиболее распространенные виды АКБ, которые можно использовать в связке с солнечными элементами, пауэрбанками и зарядками для телефонов, и попробуем разобраться, какие аккумуляторы лучше для солнечных батарей.

Автомобильные(WET)

Обозначение WET — сокращенный вариант, полностью оно выглядит как WET Cell Battery (батарея мокрых ячеек). Обычно пишут просто WET, и этого достаточно. Примечательно, что такая маркировка используется только на импортных батареях, отечественные модели маркируются надписью «свинцово-кислотная АКБ».

Название достаточно красноречиво говорит о конструкции аккумулятора. Это самая обычная, ставшая уже традиционной конструкция. В нее заливают электролит, смесь серной кислоты и дистиллированной воды. Все жидкостные аккумуляторы принадлежат к этой группе.

Существует два вида:

  1. Обслуживаемые. В верхней части каждой ячейки имеется пробка, которую можно открутить и определить количество и плотность электролита. При необходимости его подливают, так как при заряде дистиллированная вода выкипает
  2. Необслуживаемые. Корпуса таких батарей запечатаны наглухо. Выкипания электролита нет, в состав свинцовых пластин добавляется кальций и серебро. Ничего добавлять не требуется, да это и невозможно

Помещения, где хранятся обслуживаемые аккумуляторы, нуждается в создании определенных условий — температуры и усиленной вентиляции, необходимой для вывода паров серной кислоты. Этот тип батарей самый дешевый и недолговечный, подойдет в качестве АКБ для солнечных батарей относительно малой мощности.

Стартерные

Стартерные автомобильные аккумуляторы обычно имеют самую обычную WET конструкцию. Они работают в достаточно жестком режиме, так как при запуске двигателя автомобиля им приходится в короткое время выдавать большие токи в сотни ампер. После этого они так же активно заряжаются. Срок службы таких батарей довольно краток из-за жесткого рабочего режима, имеется высокий саморазряд.

Как аккумулятор для солнечной панели такую батарею использовать можно, но это нецелесообразно с экономической или технической точки зрения. Стартерные аккумуляторы быстро отдают большие токи, после чего следует медленный заряд. В составе солнечных систем им придется медленно отдавать малые токи до практически полного разряда, что создает для них неподходящий режим, ведущий к быстрому износу пластин.

Для использования стартерных аккумуляторов нужны те же условия, что и для всех обслуживаемых батарей — отдельное помещение с качественной вентиляцией. Можно применять только в низкобюджетных электростанциях в качестве временного накопителя.

AGM и GEL

И те, и другие аккумуляторы являются модифицированным типом кислотно-свинцовых батарей, наполнены жидким электролитом, созданы по современным технологиям и представляют собой АКБ для солнечных батарей нового поколения. GEL — это гелевые батареи, необслуживаемой конструкции. Их пластины намазаны специальным гелем, защищающим их от разрушения (осыпания). Газы, образованные в процессе электролиза при зарядке, с помощью одноходового крана возвращаются в электролит и вновь растворяются в нем.

Гелевые аккумуляторы для солнечных батарей не требуют никакого обслуживания, пролить электролит из них невозможно. Особенностью режима эксплуатации является необходимость зарядки при относительно небольших значениях тока и напряжения, что оптимальным образом подходит для солнечных электростанций.

Аккумуляторы AGM имеют специальные стекловолоконные разделители, выполняющие те же функции, что и гель в GEL батареях. Конструкция позволяет им работать в более жестких условиях, хотя общие свойства у обоих видов батарей близки. Особенностями АКБ является отсутствие газовыделения, быстрым временем зарядки (хватает 6-9 часов), компактными размерами.

Аккумуляторы AGM так же не допускают протечек кислоты благодаря герметичному корпусу, обладают способностью долговременной работы как в буферном, так и в циклическом режиме. Если использовать их как внешний аккумулятор, солнечная батарея получит удачный вариант накопителя энергии.

Аккумуляторы типа OPzS представляют собой заливные (обслуживаемые) батареи с трубчатыми положительными электродами. Такая особенность значительно увеличивает количество допустимых циклов зарядки/разрядки, составляя номинальный срок службы около 20 лет.

Батареи способны выдерживать без потерь весьма глубокий разряд и последующую загрузку, которые солнечные аккумуляторы испытывают на протяжении всего срока службы. Несмотря на достаточно жесткие режимы функционирования, долив электролита производится не чаще 1 раза в 2-5 лет непрерывной работы.

Основным недостатком АКБ OPzS является высокая цена, ограничивающая распространение устройств в России. При этом, в последнее время появились вполне качественные модели батарей OPzS из Китая, которые стоят почти вдвое меньше европейских аналогов.

Существуют разные виды:

  • отдельная банка 2В с емкостью до 200 мА·ч;
  • аккумулятор для солнечной батареи 12 вольт с емкостью от 80 мА·ч.

Приобретение АКБ несколько затруднено из-за необходимости заказывать их и ждать доставки.

Щелочные

Эти устройства используют не кислотный, а щелочной электролит, активным компонентом которого могут быть едкий калий или едкий натрий (КОН или NaOH). Основным отличием такой конструкции является отсутствие расхода и постоянная плотность электролита в процессе эксплуатации. Устройства имеют относительно малый вес и низкий саморазряд.

Щелочные АКБ способны легко переносить глубокий разряд с выдачей больших токов. Эта особенность делает их оптимальным выбором для тяговых аккумуляторов. При этом, имеется немало недостатков:

  • Энергетическая плотность щелочных АКБ невысока, что заставляет увеличивать их габариты.
  • Присутствует эффект памяти, при котором остаточный заряд учитывается при загрузке, уменьшающейся на эту величину. Поскольку полностью разрядить АКБ не всегда удается, емкость батарей постоянно уменьшается.
  • Невысокий КПД — он составляет лишь 55%.

Дополнительной особенностью щелочных АКБ является невозможность контроля окончания зарядки по возникшему активному газообразованию. Поскольку химическая реакция, протекающая внутри устройства, иная, чем у кислотно-свинцовых батарей, газообразование возникает по собственным причинам и не свидетельствует о полном заряде.

Литиевые АКБ

Литиевые аккумуляторы для солнечных батарей обладают гораздо большей энергоемкостью, чем кислотные или щелочные аналоги. Это позволяет производителям снижать размеры. Кроме того, литиевые устройства способны быстро принимать заряд и практически полностью отдавать его без потери рабочих качеств.

Наиболее распространенный тип — литий-ионный аккумулятор для солнечных батарей. Он обладает выгодными рабочими характеристиками, высокой энергоемкостью, способностью к глубокому разряду. Не терпит перезаряда (уменьшается количество доступных циклов), считается пожароопасным (в большей степени гипотетически).

Существуют и другие виды литиевых аккумуляторов. Основная проблема состоит в значительной разнице стоимости литиевых и любых других видов батарей, что значительно ограничивает спрос и популярность устройств среди пользователей.

Основные технические характеристики и правила выбора

Необходим аккумулятор для солнечных батарей, какой выбрать и по каким параметрам надо ориентироваться? Для того, чтобы ответить на этот вопрос, необходимо рассмотреть технические характеристики АКБ. В их число входят:

  • емкость;
  • скорость заряда и разряда;
  • размеры (длина-ширина-высота) и масса аккумулятора;
  • оптимальный режим работы;
  • продолжительность службы устройства.

Понятно, что емкость и скорость заряда/разряда должны быть максимальными, как и срок службы, тогда как габариты желательно иметь минимальными.

При выборе необходимо учитывать требования к АКБ:

  • возможность зарядки большими токами;
  • малые значения саморазряда;
  • максимальное количество рабочих циклов;
  • простота обслуживания;
  • способность выполнять свои функции в сложных температурных условиях.

Руководствуясь этими требованиями, выбирают оптимальный вариант аккумуляторов. Не следует гнаться за низкой ценой, так как экономия в данном случае обернется сокращением срока службы и необходимостью постоянного обслуживания устройств, создания для них определенных условий и вентиляционной системы. В результате окажется, что вместо сокращения расходов получено их увеличение в виде как прямых денежных вложений, так и в форме затрат труда на обслуживание.

Расчёт и выбор лучшего АКБ

Расчет АКБ представляет собой определение емкости батареи. Формула (в упрощенном виде) выглядит следующим образом: емкость АКБ = 100 × время × величина нагрузки.

Зная общую емкость, можно вычислить количество аккумуляторов. Для этого следует разделить полученное значение на емкость одного устройства. Если целое число не получается, округлять результат необходимо только в сторону увеличения.

Упрощенная формула определения времени работы (длительность цикла) выглядит так: время = суммарная ёмкость АКБ × напряжение АКБ × (КПД инвертора/мощность нагрузки).

Полученные данные позволяют определиться с параметрами отдельных устройств, подходящих для данной системы. Выбор производится исходя из потребностей и возможностей пользователя. Современный рынок предлагает массу вариантов, которые позволяют получить качественную и долговечную аккумуляторную батарею, состоящую из необходимого количества отдельных устройств.

Необходимо ознакомиться с технической документацией и паспортом устройства, в случае появления сомнений надо попросить показать сертификаты. Если товар качественный, сертификат на него всегда имеется у продавца. Если с этим возникают проблемы, нужный аккумулятор следует поискать в другом магазине.

Правила эксплуатации

Аккумуляторные батареи должны эксплуатироваться в соответствии с правилами:

  • Поверхность устройства должна быть сухой и чистой, все металлические части смазаны техническим вазелином, предотвращающим коррозию.
  • Для обслуживаемых аккумуляторов необходима регулярная проверка плотности и объема электролита.
  • Соблюдение правил подключения, соответствие полярности и типа соединения АКБ.
  • Соблюдение специализированных требований, которые изложены в паспорте устройства. В частности, периодичности обслуживания, условий работы, температурного режима эксплуатации

Для необслуживаемых аккумуляторов правила эксплуатации сводятся к обеспечению номинального рабочего и температурного режима, что позволяет продлить срок службы и получить от батарей максимальную отдачу.

Ссылка на основную публикацию
В системах автономного солнечного электроснабжения могут использоваться различные виды аккумуляторных батарей. Их выбор зависит от стоимости инженерного решения, наличия и функционала контроллера заряда, условий эксплуатации, назначения и других факторов.

Виды аккумуляторов для солнечных батарей

Все АКБ, представленные на рынке, можно разделить на 3 типа:

Свинцово-кислотные АКБ

По конструкции делятся на обслуживаемые (заливные) и необслуживаемые (герметизированные). Вторые в международной классификации обозначаются аббревиатурой SLA и содержат сернокислый электролит связанным в стекловолокне (AGM) или в виде геля. В сравнении с заливными имеют более высокие эксплуатационные характеристики и лучше приспособлены для использования в солнечной электроэнергетике.

Вне зависимости от применяемых технологий все свинцово-кислотные аккумуляторы в целом плохо переносят глубокий разряд, но способны постоянно подзаряжаться малыми токами.

Стартерные (автомобильные) обслуживаемые аккумуляторы — рассчитаны на выдачу высокого тока в течение короткого промежутка времени, имеют высокий процент саморазряда, требуют обслуживания и вентилируемого помещения, хуже всех АКБ переносят глубокий разряд, который резко сокращает срок службы. Используются в самых низкобюджетных системах (потому что любые АКБ придется менять каждый сезон) при условии постоянного контроля за уровнем и плотностью электролита. Самые дешевые.
AGM — герметизированные батареи, которые в общем случае предназначены для использования в источниках бесперебойного питания, прекрасно работают в буферном режиме по 10−15 лет, но не предназначены для поддержания постоянной нагрузки. В системах солнечного электроснабжения целесообразно применять только в модификации VRLA — батарей глубокого разряда с толстыми пластинами и регулирующим клапаном для сброса давления газа. Относительно недорогие.
Гелевые — герметизированные АКБ, которые дольше предыдущих выдерживают циклические режимы заряда-разряда, способны переносить сильные морозы и могут быть установлены даже на боку. Как и AGM, производятся в двух модификациях: общего назначения и для глубокого разряда (DC). DC за счет более толстых электродных пластин способны многократно восстанавливаться и чаще всего используются в солнечной энергетике. Стоят дороже AGM, но не критично.
Гелевые с трубчатыми электродами (OPzV) — герметизированные батареи, специально разработанные для длительного отбора большой емкости и способные функционировать в таком режиме до 20 часов. В солнечной энергетике целесообразны только в системах с большой мощностью. Производятся в ЕС и США, стоят дорого, но есть хорошие китайские и украинские бренды вдвое дешевле.
Заливные с намазными пластинами (OPzS) — обслуживаемые АКБ, которые «пришли» в солнечную энергетику из сегмента тяговых аккумуляторов для электрических машин. Позиционируются как специально разработанные для солнечных электростанций, способны переносить без повреждений много циклов заряда-разряда до 60% номинальной емкости, но требуют установки в помещении с соблюдением норм пожарной безопасности и принудительной вентиляции. Стоят дорого и поставляются по предзаказу, поэтому используются гораздо реже, чем гелевые.